跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂秉憲
Bing-Xian Lu
論文名稱: 3D Map Exploration and Search using Topological Fourier Sparse Set
指導教授: 曾國師
Kuo-Shih Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 75
中文關鍵詞: 3D 地圖勘探壓縮感測物件搜尋
外文關鍵詞: 3D map exploration, Compressed sensing, Object search
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D地圖探索是機器人技術中的關鍵技術之一。
    然而,由於環境未知,尋找最佳的勘探路徑是一個挑戰。
    這項研究提出了拓撲傅立葉稀疏集(TFSS)演算法,
    使無人飛行器(UAV)能夠在理論上保證探索3D環境效能。
    該演算法由Rips複合體和傅立葉稀疏集組成。
    Rips複合體用於擴展子目標以進行地圖探索,
    而傅立葉稀疏集用於學習子目標選擇的子模函數。
    由於空間探索的目標函數被重新構造為路徑限制下的最大化子模函數,
    貪婪算法可以達到(1/2)(1-e^(-1))的近似最佳值。
    使用該演算法進行的實驗證明,無人機可以比基準方法探索更多環境。
    此外,該演算法顯示了探索問題的持續同調性。


    3D map exploration is one of key technologies in robotics.
    However, nding an optimal exploration path is a challenge due to unknown environments.
    This research proposed the Topological Fourier Sparse Set (TFSS) algorithm to enable an unmanned aerial vehicle (UAV) to explore 3D environments with theoretical guarantees.
    The algorithm consists of the Rips complex and Fourier sparse set.
    The Rips complex is to expand subgoals for map exploration while the Fourier sparse set is to learn submodular functions for subgoal selection.
    Since the objective function of spatial exploration is reformulated as a maximizing submodular function with path constraints,
    greedy algorithms can achieve (1/2)(1-e^(-1)) of the optimum.
    Experiments conducted with this algorithm demonstrates that the UAV can explore the environments more than the benchmark approaches.
    Furthermore, the algorithm shows the persistence homology of exploration problems.

    摘要 . i Abstract. ii Acknowledgements iii Contents iv Figures vi Tables . ix 1 Introduction 1 1.1 Publication Note 5 2 Relevant Work.. 6 2.1 Map exploration 6 2.2 Learning Submodular functions 6 2.3 Probabilistic search 7 2.4 Topological motion planning . 8 3 Background. 10 3.1 Submodularity . 10 3.2 Spatial Fourier Sparse Set (SFSS) Leaning 11 3.3 ƒech and rips complexes 14 3.4 Hexagonal packing in Topology and Fourier domain . 15 3.5 Strength and weakness of Topological and Fourier approaches for coverage problems . 16 4 The proposed algorithms and complex. 17 4.1 Problem formulation 17 4.2 Overview of the proposed approach 17 4.3 Topological Fourier Sparse Set algorithm . 18 4.4 Extended Rips complex 21 4.5 Strength of topological Fourier sparse set . 23 4.6 Proofs of TFSS properties . 24 5 Experiments 28 5.1 Experimental setup 28 5.2 EX1: Exploration with xed subgoals 31 5.3 EX2: Exploration with dynamic subgoals 32 5.4 Topological analysis 37 5.5 Search experiments . 40 6 CONCLUSIONS.. 42 References..44

    [1] Héctor H. González-Baños and Jean-Claude Latombe. Navigation
    strategies for exploring indoor environments. The International
    Journal of Robotics Research, 21:829848, 2002.
    [2] Lionel Heng, Alkis Gotovos, Andreas Krause, and Marc Pollefeys.
    Ecient visual exploration and coverage with a micro aerial vehicle
    in unknown environments. IEEE International Conference on
    Robotics and Automation, 2015.
    [3] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova,
    and Roland Siegwart. Receding horizon nextbestview planner
    for 3d exploration. IEEE International Conference on Robotics and
    Automation, 2016.
    [4] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova,
    and Roland Siegwart. Receding horizon path planning for 3d exploration
    and surface inspection. Autonomous Robots, 42(2):291306,
    2018.
    [5] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher.
    An analysis of approximations for maximizing submodular set functions.
    Mathematical Programming, 14:265294, 1978.
    [6] U. Feige. A threshold of ln n for approximating set cover. Journal
    of the ACM, 45(4):634652, 1998.
    [7] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage
    problem. Information Processing Letters, 70(1):3945, 1999.
    [8] Haifeng Zhang and Yevgeniy Vorobeychik. Submodular optimization
    with routing constraints. AAAI Conference on Articial Intelligence,
    2016.
    [9] Kuo-Shih Tseng and Bérénice Mettler. Near-optimal probabilistic
    search using spatial fourier sparse set. Autonomous Robots, 2017.
    [10] Kuo-Shih Tseng. Learning in human and robot search: Subgoal,
    submodularity, and sparsity. University of Minnesota Ph.D. dissertation,
    2016.
    [11] Bing-Xian Lu and Kuo-Shih Tseng. 3d map exploration via learning
    submodular functions in the fourier domain. International Conference
    on Unmanned Aircraft Systems (ICUAS), 2020.
    [12] Bing-Xian Lu and Kuo-Shih Tseng. 3d map exploration using topological
    fourier sparse set. Autonomous Robots, Under review.
    [13] H. Durrant-Whyte and T. Bailey. Simultaneous localization and
    mapping (SLAM): part i. IEEE Robotics and Automation Magazine,
    13(2):99110, 2006.
    [14] Steven M. LaValle and James J. Kuner Jr. Randomized kinodynamic
    planning. IEEE International Conference on Robotics and
    Automation, pages 473479, 1999.
    [15] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide
    Scaramuzza, José Neira, Ian Reid, and John Leonard. Past, present,
    and future of simultaneous localization and mapping: Toward the
    robust-perception age. IEEE Transactions on Robotics, 32(6):1309
    1332, 2016.
    [16] Amarjeet Singh, Andreas Krause, and William Kaiser. Nonmyopic
    adaptive informative path planning for multiple robots. International
    Joint Conference on Articial Intelligence, pages 18431850,
    2009.
    [17] Georey Hollinger and Sanjiv Singh. Proofs and experiments in
    scalable, near-optimal search by multiple robots. Robotics: Science
    and Systems, pages 14261431, 2008.
    [18] Kuo-Shih Tseng and Bérénice Mettler. Near-optimal probabilistic
    search via submodularity and sparse regression. Autonomous
    Robots, 2015.
    [19] Georey Hollinger, Chiranjib Choudhuri, Urbashi Mitra, and Gaurav
    S. Sukhatme. Squared error distortion metrics for motion planning
    in robotic sensor networks,. in proceedings International Workshop
    Wireless Networking for Unmanned Autonomous Vehicles,,
    pages 14261431, 2013.
    [20] Maria-Florina Balcan and Nicholas J.A. Harvey. Learning submodular
    functions. Proceedings of the 43rd annual ACM symposium on
    Theory of computing, 2011.
    [21] Peter Stobbe and Andreas Krause. Learning fourier sparse set functions.
    Proceedings of the Fifteenth International Conference on Arti
    cial Intelligence and Statistics, pages 11251133, 2012.
    [22] Lawrence D. Stone. The theory of optimal search. Operations Research
    Society of America, 1975.
    [23] Frederic Bourgault, Tomonari Furukawa, and Hough F. Durrant-
    Whyte. Coordinated decentralized search for a lost target in a
    bayesian world. IEEE/RSJ International Intelligent Robots and
    Systems, pages 4853, 2003.
    [24] Nassirou Lo, Jean Berger, and Martin Noel. Toward optimizing
    static target search path planning. IEEE Symposium on Computational
    Intelligence for Security and Defence Applications, pages
    17, 2012.
    [25] Haye Lau, Shoudong Huang, and Gamini Dissanayake. Discounted
    mean bound for the optimal searcher path problem with nonuniform
    travel times. European Journal of Operational Research,
    190(2):383-397, 2008.
    [26] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability
    of persistence diagrams. Discrete and Computational Geometry,
    37(1):103120, 2007.
    [27] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Persistent
    homology for path planning in uncertain environments. IEEE
    Transactions on Robotics, 31(3):578590, 2015.
    [28] Vijay Govindarajan, Subhrajit Bhattacharya, and Vijay Kumar.
    Human-robot collaborative topological exploration for search and
    rescue applications. Distributed Autonomous Robotic Systems,
    112:1732, 2016.
    [29] V. de Silva and R. Ghrist. Coordinate-free coverage in sensor networks
    with controlled boundaries via homology. The International
    Journal of Robotics Research, 25(12):12051222, 2006.
    [30] Henry Adams and Gunnar Carlsson. Evasion paths in mobile sensor
    networks. International Journal of Robotics Research, 34:90104,
    2015.
    [31] Jason Derenick, Vijay Kumar, and Ali Jadbabaie. Towards simplicial
    coverage repair for mobile robot teams. IEEE International
    Conference on Robotics and Automation, 2010.
    [32] Rattanachai Ramaithitima, Michael Whitzer, Subhrajit Bhattacharya,
    and Vijay Kumar. Sensor coverage robot swarms using
    local sensing without metric information. IEEE International Conference
    on Robotics and Automation, 2015.
    [33] R.G. Baraniuk. Compressive sensing,. IEEE Signal Processing Magazine,
    24(4):118121, 2007.
    [34] Qaisar S., Pakistan Islamabad, R.M. Bilal, W. Iqbal, and M. Naureen.
    Compressive sensing: From theory to applications, a survey.
    Journal of Communications and Networks,, 15(5):443456, 2013.
    [35] Mark Schmidt. Least squares optimization with l1-norm regularization.
    2005.
    [36] Robert Tibshirani. Regression shrinkage and selection via the lasso.
    Journal of the Royal Statistical Society, Series B, 58:267288, 1996.
    [37] Amir Beck and Marc Teboulle. A fast iterative shrinkagethresholding
    algorithm for linear inverse problems. SIAM Journal
    on Imaging Sciences, 2:183202, 2009.
    [38] Emmanuel Candes, Justin Romberg, and Terence Tao. Robust uncertainty
    principles: Exact signal reconstruction from highly incomplete
    frequency information. IEEE Transaction on Information
    Theory, 52(2):489509, 2006.
    [39] Robert Ghrist. Elementary applied topology. Createspace, 2014.
    [40] Yu-Chung Tsai and Kuo-Shih Tseng. Deep compressed sensing for
    learning submodular functions. Sensors, 20(9):2591, 2020.
    [41] Kuo-Shih Tseng and Bérénice Mettler. Human planning and coordination
    in spatial search problems. 1st IFAC Conference on Cyber-
    Physical and Human-Systems, 2016.
    [42] Kuo-Shih Tseng and Bérénice Mettler. Analysis and augmentation
    of human performance on telerobotic search problems. IEEE Access,
    8:5659056606, 2020.
    [43] Kuo-Shih Tseng and Bérénice Mettler. Analysis of coordination
    patterns between gaze and control in human spatial search. 2nd
    IFAC Conference on Cyber-Physical and Human-Systems, 2018.
    [44] Bing-Xian Lu, Ji-Jie Wu, Yu-Chung Tsai, Wan-Ting Jiang, and
    Kuo-Shih Tseng. A novel telerobotic search system using an unmanned
    aerial vehicle. IEEE International Conference on Robotic
    Computing, 2020.
    [45] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum
    entropy deep inverse reinforcement learning. arxiv., 2015.
    [46] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner. Maximum
    entropy deep inverse reinforcement learning. IEEE/RSJ International
    Conference on Intelligent Robots and Systems, pages
    21530866, 2016.

    QR CODE
    :::