| 研究生: |
馬浩元 Hao-Yuan Ma |
|---|---|
| 論文名稱: |
結合旋轉塗佈摻雜之局部射極雷射摻雜技術並應用於製作N型單晶矽太陽能電池 Laser doping combined with spin-on dopant technique for fabrication of n-type monocrystalline silicon solar cell |
| 指導教授: |
陳一塵
I-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 局部雷射擴散摻雜製程 、旋轉塗佈摻雜源 、選擇性射極 、N型PERT( 鈍化射極及背面全擴散)雙面太陽能電池 |
| 外文關鍵詞: | Local laser-doping, Spin-on-dopant, Selective emitter, N-type PERT(passivated emitter rear totally diffused) silicon solar cells |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將開發結合旋轉塗佈摻雜(spin-on dopant, SOD)技術之局部雷射摻雜(laser doping, LD)擴散製程。此製程技術可用於製作選擇性射極(selective emitter, SE)結構於矽晶太陽能電池;亦具潛力應用於其他半導體元件之局部高摻雜層製作。相較於傳統的氣體摻雜源,SOD 製程技術具有成本低、安全性高等優點;另一方面相較於以離子佈植與短波長雷射系統製作SE的方式,本研究重點為開發二氧化碳(CO2)雷射進行局部高摻雜結構製作,除了可有效減少設備成本並能降低製程中之表面缺陷產生。研究初期透過自行撰寫之模擬程式計算雷射製程參數對矽晶圓表面溫度變化之影響並藉此優化後續製程參數。透過SOD結合局部雷射摻雜製作之SE結構,淺摻雜與重摻雜區之片電阻可根據需求分別控制在100-150 Ω/sq 與50-80 Ω/sq。
在太陽能電池實作成果方面,本研究所開發之SOD擴散製程結合CO2雷射摻雜製作具SE結構之N型PERT(鈍化射極及背面全擴散)雙面太陽能電池,其相較於均勻性emitter結構之電池,光電轉換效率可提升0.26%,開路電壓提升4.31 mV,短路電流提升0.92 mA/cm2。
In this experiment, a local laser-doping technique based on a spin-on-dopant source and carbon dioxide (CO2) laser has been developed with the purpose of implementing selective emitter (SE) structures in bifacial n-type PERT (passivated emitter rear totally diffused) silicon solar cells. Compared with the conventional gas diffusion sources, our SOD process has the advantages of low cost and non-toxicity.
Regarding the SE processing, compared to ion implantation and short-wavelength laser systems, we used carbon dioxide (CO2) laser system to perform the fabrication of SE structures on Si wafers, which can effectively reduce both of the equipment costs and surface defects generated during the process. After optimization of the process parameters, the sheet resistance of the lightly-doped and heavily-doped zone could be controlled at 100-150 Ω/sq and 50-80 Ω/sq on demand, separately.
Finally, SE N-PERT (passivated emitter rear totally diffused) Si solar cells were fabricated using the CO2 laser doping combined with SOD diffusion process. Compare to the reference cell with a homogeneous emitter structure, the selective emitter solar cell improves the efficiency 0.26%, the open circuit voltage 4.31 mV, the short circuit current 0.92 mA/cm2.
[1] Research Cell Efficiency Records. Available at: https//www.nrel.gov/pv/.
[2] J. Zhao, A. Wang and M.A. Green, Progress in Photovoltaics, 8, 549-558 (2000).
[3] J. Schmidt, K. Bothe, R. Bock, C. Schmiga, R. Krain, R. Brendel, 22nd European Photovoltaic Solar Energy Conference, 3-7 (2007).
[4] International Technology Roadmap for Photovoltaic Results 2018 – Presentation.
[5] A. Wang, J. Zhao, M.A. Green, Applied physics letters, 57, 605 (1990).
[6] H. Hoppe, N. S. Sariciftci, Journal of materials research, 19, 1924-1945 (2004).
[7] Schimpe, R., Aeu Archiv Fur Elektronik Und Ubertragungstechnik International Journal of Electronics and Communications, 46, 80-85 (1992).
[8] Sharma, S.K., et al., Journal of Physics D Applied Physics, 26(7), 1130-1133 (1993).
[9] H. Hoppe, N. S. Sariciftci, Journal of materials research, 19, 1924-1945 (2004).
[10] B. Fischer, PhD Thesis, University of Konstanz, 2003.
[11] R. Schimpe, International Journal of Electronics and Communications, 46, 80-85 (1992).
[12] S. Pizzini, Solar Energy Materials & Solar Cells, 94, 1528-1533 (2010).
[13] Daniel Macdonald, IEEE, 2, 0-7803-7471-1(2002).
[14] Muramatsu, S., et al., Solar Energy Materials and Solar Cells., 65, 599-606 (2001).
[15] Lee, Y., et al., Nanoscale Research Letters, 7, 1-6 (2012).
[16] Dauwe, S., et al., Progress in photovoltaics, 10, 271-278 (2002).
[17] Salemi, S., et al., Journal of Applied Physics (2013).
[18] Chang, L.S., P.L. Gendler, and J.H. Jou, Journal of Materials Science, 26, 1882-1890 (1999).
[19] Jang, J.H. and K.S. Lim, Japanese journal of applied physics part 1-regular papers short notes & review papers, 36, 6230-6236 (1997).
[20] Sepeai S. et al., International Journal of Photoenergy, 10, 1155-1162 (2012).
[21] J. Del Alamo, J. Van Meerbergen, F. d'Hoore, J Nijs, Solid-State Electronics, 24, 533-538 (1980).
[22] P. Michael, Godlewski, R. Cosmo Baraona, W. Henry, 10th Photovoltaic Specialists' Conf., IEEE, 29, 131-150 (1990).
[23] Arnab Das, PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering, (2012)
[24] A. G. Aberle, University of New South Wales, Sydney NSW 2052 (1999).
[25] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers (2005).
[26] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. (2006).
[27] S.J. Choi, et al., Renewable Energy, 54, 96-100 (2013).
[28] A. B. Sproul, M. A. Green, and A. W. Stephens, J. Appl. Phys., 72, 4161-4171 (1992).
[29] M. S. Tyagi and R. V. Overstraeten, Solid-St. Electron., 26, 577-597 (1983).
[30] M. J. Kerr and A. Cuevas, J. Appl. Phys., 91, 97-104 (2002).
[31] W. Shockley and W. Read, Phys. Rev., 87, 835-842 (1952).
[32] I. Martín, M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla , Journal of Applied Physics, 98, 114912-114921 (2005).
[33] M. Kerr and A. Cuevas, Journal of Applied Physics, 91, 2473-2481 (2002).
[34] S. Dauwe, harderberg (2004).
[35] http://www.pv-tech.org/solar-media-store-shutdown
[36] Y. Gassenbauer, K. Ramspeck, B. Bethmann, K. Dressler, J.D. Moschner, M. Fiedler, E. Brouwer, R. Drssler, N. Lenck, F. Heyer, M. Feldhaus, A. Seidl, M. Muller, A. Metz, IEEE Journal of Photovoltaics, 99, 125 (2013).
[37] M. Zanuccoli, P. F. Bresciani, M. Frei, H.-W. Guo, H. Fang, M. Agrawal, C. Fiegna, E. Sangiorgi, ,35th IEEE Photovoltaic Specialists Conference, (2010)
[38] R. De Rose, M. Zanuccoli, P. Magnone, M. Frei, E. Sangiorgi, C. Fiegna, IEEE J. Photovolt, 3, 159–167 (2013)
[39] Heinrich, G. et al. Energy Procedia 8, 592 (2011).
[40] P. K. Basu, J. Cunnusamy, D. Sarangi, M. B. Boreland, Renewable Energy, 66, 69 (2014)
[41] M. Z. Rahman, Optics and Photonics Journal, 2, 129‐134 (2012).
[42] H. Antoniadis, F. Jiang, W. Shan and Y. Liu, Proceedings of the 35th IEEE Photovoltaic Solar Energy Conference and Exhibition, Honolulu, 20- 25 (2010).
[43] H. Antoniadis , F. Jiang, W. Shan, Y. L. in Proceedings of the 35th IEEE Photovoltaic Specialists Conference 1193 (2010).
[44]R. Low, A. Gupta, N. Bateman, D. Ramappa,P. Sullivan, W. Skinner, J. Mullin, S. Peters, H. WeissWallrath, Proc. 35th IEEE PVSC, Honolulu 2010
[45] M. Jeon, J. Lee, S. Kim, W. Lee, E. Cho, Materials Science and Engineering B, 176, 1285 (2011)
[46] D. Rudolph, K. Peter, A. Meijer, O. Doll, I. Kohler, 26th European Photovoltaic Solar Energy Conference and Exhibition, 1349 (2011)
[47] Basu, P. K., Cunnusamy, J., Sarangi, D. &Boreland, M. B. Renew. Energy 66, 69 (2014).
[48] D. Rudolph, K. Peter, A. Meijer, O. Doll, I. K. in the 26th European Photovoltaic Solar Energy Conference and Exhibition 1349 (2011).
[49] H. Haverkamp, A. Dastgheib-Shirazi, B. Raabe, F. Book, G. H. in Photovoltaic Specialists Conference (2008).
[50] F. Book, S. Braun, A. Herguth, A. Dastgheib-Shirazi, B. Raabe, G. H. in Photovoltaic Specialists Conference 1309 (2010).
[51] M. Dahlinger, B. Bazer-Bachi, T. C. Röder, J. R. Köhler, R. Zapf-Gottwick, and J. H. Werner, Energy Procedia 38, 250(2013).
[52] A. Ogane, K. Hirata, K. Horiuchi, Y. Nishihara, Y. Takahashi, A. Kitiyanan, and T. Fuyuki, Jpn. J. Appl. Phys. 48, 071201 (2009).
[53] D. Kray, N. Bay, G. Cimiotti, S. Kleinschmidt,N. Kösterke, A. Lösel, M. Sailer, A. Träger, H. Kühnlein, H. Nussbaumer, C. Fleischmann, F. Granek, Proc. 35th IEEE PVSC, Honolulu 2010.
[54] A. Lennon, Y. Yao, and S. Wenham, Prog. Photovoltaics: Res. Appl., 21, 1454–1468 (2013).
[55] T. C. Röder, S. J. Eisele, P. Grabitz, C. Wagner, G. Kulushich, J. R. Köhler and J. H. Werner, Photovoltaics: Research and Applications 18(7), 505 (2010).
[56] J. E. Sipe, J. F. Young, , J. S. Preston & H. M. VanDriel, Phys. Rev. B 27, 1141 (1983).
[57] Brand, A. A., Knorz, A., Zeidler, R., Nekarda, J.-F. & Preu, R. SPIE. 8473, 84730D (2012).
[58] Kim, M., Kim, D., Kim, D. &Kang, Y. Sol. Energy 109, 105 (2014).
[59] G. Amato, C. Delerue, H. J. von Bardeleben, Structural and Optical Properties of porous silicon Nanostructures, 1997.
[60] T.Sakka, D.Hotta, A. Kuroyanagi, S. Akiba, M. Mabuchi, Y. Ogata, Jpn. J. Appl. Phys. 37 (5A),1998
[61] Y. Ishikawa, T. Honda, S. Yoshinaga, Y. Jiang, Y. Uraoka, Y. Watanabe and H. Ikenoue, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1-3, 2015.
[62] K. S. Dieter. Semiconductor material and device characterization. Wiley & Sons Inc, 245, 83 (1990).
[63] C. J. Glassbrenner and Glen A. Slack. Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point. Phys. Rev., 134(4A), A1058-A1069 (1964).
[64] H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, Thermal Conductivity of Silicon from 300 to 1400 K, Phys. Rev., 130(5), 1743-1748 (1963).
[65] K. Ryu, A. Upadhyaya, V. Upadhyaya, A. Rohatgi and Y. W. Ok, Prog. Photovolt: Res. Appl., 23, 119, (2015)
[66] T. S. B¨oscke, D. Kania, C. Sch¨ollhorn, D. Stichtenoth, A. Helbig, P. Sadler, M. Braun, M. Dupke, M. Wei, A. Grohe, J. Lossen, and H. J. Krokoszinski, IEEE Journal of photovoltaics, 4, 48 (2014)
[67] P. Oesterlin and U. Jäger, 18th International Conference on Advanced Thermal Processing of Semiconductors, 146-153 (2010).