跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾華逸
Hwa-Yi Tseng
論文名稱: 以機器學習技術協助預估電路佈局擺置中的繞線成本
Routing Cost Prediction at Placement Stage Using Machine Learning Technique
指導教授: 劉建男
Chien-Nan Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 106
語文別: 中文
論文頁數: 53
中文關鍵詞: 機器學習繞線成本人工神經網路
外文關鍵詞: Machine Learning, Routing Cost, Neural Network
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電路布局擺置後的結果,會嚴重影響繞線的方式。為了讓電路維持在最佳的效能以及排除非理想效應,在做佈局擺置的時候應該要有繞線成本的預估。在佈局擺置的階段,現行的繞線預估大多採用半周長來做推測,在多端點情況下可能不太正確。而且,對於較敏感的類比電路而言,繞線成本不單單只有線長而已,導線轉彎數以及線導孔的數量等參數也都會電路效能產生的影響。
    本論文利用機器學習的技術,協助設計者進行早期電路繞線成本的預估,希望能提早知道符合實際情況的繞線成本,幫助設計者在佈局擺置時進行對應的調整,以避免掉一些不必要的重複設計。我們將利用人工神經網路的方式做機器學習,藉由擺置的資訊來預測線長、轉彎數、以及線導孔數量等繞線成本。如同實驗數據所示,經過學習的神經網路將能精準預估佈局擺置過後的繞線成本,提供設計者有用的參考資訊。


    The placement results have large impacts on routing results. In order to keep circuit performance and eliminate non-ideal effects, we have to predict routing cost at layout placement stage. Most of current approaches use semi-perimeter method to predict the routing cost at placement stage. It might not be correct in multi- terminal routing cases. Moreover, for sensitive analog circuits, routing cost considers more than wire length only. The turn numbers of each metal line and the via numbers of each net will also effect circuit performance.
    In this thesis, we use machine learning technique to help designer predict the routing cost at placement stage. With the predicted routing cost, we can make proper adjustment in advance to avoid unnecessary design iterations. Using artificial neural networks for machine learning, we can use the placement information to predict the routing cost, such as wire length, via numbers, and turn numbers. As shown in the experimental results, we can accurately predict wire length, via number, turn number base on the neural network models. They can be good references for designers to determine a good layout placement.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章、緒論 1 1-1 電路設計流程 1 1-2 研究動機 3 1-3 問題定義 5 1-4 論文結構 6 第二章、背景知識 7 2-1 電路繞線成本 7 2-1-1 導線線長 7 2-1-2 線導孔 8 2-1-3 導線轉彎處 9 2-2 人工神經網路 10 2-2-1 神經網路種類 10 2-2-2 神經網路架構 12 2-2-3 權重值 12 2-2-4 隱藏層神經元 13 2-2-5 激活函數 13 2-3 訓練資料 14 2-3-1 未標記資料 14 2-3-2 已標記資料 15 2-3-3 資料正規化 15 第三章、機器學習流程 17 3-1 建立人工神經網路 18 3-1-1 選擇人工神經網路 18 3-1-2 輸入層 18 3-1-3 輸出層 19 3-2 產生訓練數據 20 3-2-1 萃取電路佈局資料 20 3-2-2 輸入資料 21 3-2-3 輸出資料 21 3-2-4 正規化訓練資料 22 3-3 迭代訓練資料 23 3-3-1 學習率 23 3-3-2 迭代次數 23 3-3-3 調整權重值 24 3-4 調整神經網路架構 25 3-4-1 隱藏層神經元架構 25 3-4-2 選擇激活函數 26 3-5 半監督式學習網路 27 3-5-1 產生未標記資料 27 3-5-2 產生偽標記資料 27 3-5-3 產生測試資料 28 第四章、實驗結果及分析 29 4-1 實驗環境 29 4-2 電路資訊 30 4-3 訓練數據 32 4-3-1 輸入資料 32 4-3-2 輸出資料 33 4-4 訓練結果 34 第五章、結論與未來展望 37 參考文獻 38

    [1] Milan Hajek, “Neural Networks”, University of KwaZulu-Natal, 2005
    [2] Wikipedia, “Physical Design (electronics)”, https://en.wikipedia.org/wiki/Physical_design_(electronics)
    [3] Wikipedia, “Standard Cell”, https://en.wikipedia.org/wiki/Standard_cell
    [4] 紀浩瑜 “以減少導線負載為目標的效能導向之類比電路繞線方法” 國立中央大學電機工程學系碩士論文, July, 2017
    [5] Wikipedia. “Hopfield Network”, https://en.wikipedia.org/wiki/Hopfield_network
    [6] Faith Ertam, Galip Aydin, “Data Classification with Deep Learning using Tensorflow”, 2017 International Conference on Computer Science and Engineering (UBMK)
    [7] Google TensorFlow, https://www.tensorflow.org/
    [8] Nvidia CUDA, https://developer.nvidia.com/
    [9] Po-Hsun Wu, Mark Po-Hung Lin, and Tsung-Yi Ho, ‘Analog Layout Synthesis with Knowledge Mining’, 2015 European Conference on Circuit Theory and Design (ECCTD)
    [10] Bo Liu, Francisco V. Fernandez, andGeorges Gielen, ‘Fuzzy Selection Based Differential Evolution Algorithm for Analog Cell Sizing Capturing Imprecise Human Intentions’, 2009 IEEE Congress on Evolutionary Computation (CEC 2009)
    [11] Sheng-Yuan Lin, Jing-Yi Chen, Jin-Cheng Li, Wan-Yu Wen, and Shih-Chieh Chang, ‘A Novel Fuzzy Matching Model for Lithography Hotspot Detection’, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)
    [12] Wen-Hsiang Chang, Chien-Hsueh Lin, Szu-Pang Mu, Li-De Chen, Cheng-Hong Tsai, Yen-Chih Chiu, and Mango C.T. Chao, ‘Generating Routing-Driven Power Distribution Networks With Machine-Learning Technique’, 2017 IEEE Transactions on Computer-Aided Design of Integrated Circuits and System
    [13] Michal Puheim, Ladislav Madarász, “Normalization of Input and Outputs of Neural Network Based Robotic Arm Controller in Role of Inverse Kinematic Model”, SAMI 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics
    [14] 李牧勳, “Front-End Supply Current Waveform Models for Dynamic IR-Drop Analysis”, 國立中央大學電機工程學系博士論文, June, 2012
    [15] Wikipedia, “Semi-supervised learning”, https://en.wikipedia.org/wiki/Semi-supervised_learning

    QR CODE
    :::