跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許玉瑩
Yu-Ying Hsu
論文名稱: 利用矽氧烷化合物製備分子拓印高分子
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 92
中文關鍵詞: 溶膠凝膠法分子拓印
外文關鍵詞: sol-gel, MIP
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究利用溶膠-凝膠法以四甲氧基矽烷 (TMOS) 或與矽偶合劑為單體,製備出具有吸附及辨識咖啡因的分子拓印高分子材料,並探討不同製備條件即pH值、R值 (H2O/Si)、偶合劑的種類及添加量對分子拓印之影響。本研究所得分子拓印高分子材料可經由煅燒的方式將模版分子移除,而留下具有與拓印物質互補的辦識位置。
    分子拓印高分子的性質可利用高效能液相層析儀 (HPLC) 測量咖啡因鍵結量及選擇性 (α,咖啡因鍵結量與類似物茶鹼鍵結量之比值),且可經由氮氣吸附孔隙儀 (ASAP) 得知,所製備之分子拓印高分子是否具多孔性質。
    本研究結果顯示,單獨利用 TMOS 所製備之分子拓印高分子具有狹窄的孔徑分佈,並具有高比表面積 (434.5 m2/g),故可得到較高之咖啡鍵結量 (17 μmol/g)。而反應系統中藉由二官能基矽烷 (KBM-22) 或三官能基矽烷 (KBM-13) 的添加,可改變所得分子拓印高分子的比表面積與孔徑大小。隨著 KBM-13 添加比例的增加,可使咖啡因的鍵結量下降,但是提升分子拓印高分子的選擇性,最高可達7。
    而利用煅燒升溫梯度的改變,所得分子拓印高分子之性質也有所不同。在改變煅燒升溫梯度下所得的咖啡因鍵結量,以利用 KBM-13所製備的提升效果較佳,可提升2 ~ 3倍,且選擇性也有明顯提升,最高可達48。


    目 錄 目錄…………………………………………………………………… I 圖索引………………………………………………………………… III 表索引………………………………………………………………… V 第一章 前言………………………………………………………….. 1 1-1 分子拓印原理………………………………………………… 2 1-2 共價鍵與非共價鍵型分子拓印……………………………… 5 1-3 溶膠-凝膠技術之簡介………………………………………... 9 1-4 溶膠-凝膠法之分子拓印材料………………………………... 17 1-5 咖啡因模版分子之介紹……………………………………… 23 1-6 研究目的……………………………………………………… 25 第二章 實驗………………………………………………………….. 27 2-1 實驗藥品……………………………………………………… 28 2-2 實驗儀器……………………………………………………… 30 2-3 分子拓印高分子材料之製備………………………………… 31 2-4 分子拓印高分子材料之物性測試…………………………… 34 第三章 結果與討論………………………………………………….. 36 3-1 四甲氧基矽烷製備分子拓印高分子………………………… 37 3-1-1 pH值對分子拓印高分子之影響………………………… 37 3-1-2 咖啡因添加量對分子拓印高分子之影響………………... 41 3-1-3 R值對分子拓印高分子之影響………………………… 43 3-2 四甲氧基矽烷與矽偶合劑製備分子拓印高分子…………… 46 3-2-1 R值對分子拓印高分子之影響……………………………. 46 3-2-1-1 高R值對分子拓印高分子之影響…………………….. 46 3-2-1-2 低R值對分子拓印高分子之影響…………………….. 53 3-2-2 pH值對分子拓印高分子之影響………………………… 55 3-2-3 二官能基矽烷含量對分子拓印高分子之影響…………... 61 3-2-4 三官能基矽烷含量對分子拓印高分子之影響…………... 67 3-2-5 不同煅燒溫度移除模版分子之探討……………………... 72 3-2-6 分子拓印高分子之結構鑑定……………………………... 78 3-2-7 咖啡因拓印之驗證………………………………………... 84 第四章 結論………………………………………………………….. 87 參考文獻……………………………………………………………… 89 圖索引 Figure 1-1 A way to make artificial locks for molecular keys………... 3 Figure 1-2 Schematic illustration of non-covalent molecular imprinting………………………………………………... 4 Figure 1-3 Covalent imprinting of mannopyranoside using itsp-vinylbenzenboronic acid as a functional monomer…….. 7 Figure 1-4 Non-covalent imprinting by theophylline………………… 8 Figure 1-5 The hydrolysis and condensation of silane……………….. 12 Figure 1-6 Sol-gel reaction process…………………………………... 13 Figure 1-7 Gel structure for acid and base catalyst reaction………….. 14 Figure 1-8 Polymerization behavior of aqueous silica……………….. 15 Figure 1-9 Scheme of relative reaction kinetics of alkoxysilanes versus pH…………………………………………………. 16 Figure 1-10 Preparation procedures used to create the imprinted silicas……………………………………………………. 18 Figure 1-11 Chemical structure of template molecules………………. 20 Figure 1-12 Scheme of formation of chiral cavity in a sol-gel matrix... 20 Figure 1-13 The structure of three dye molecules and schematic representation of the preparation of their imprinted polysiloxanes……………………………………………. 21 Figure 1-14 Scheme of a sol-gel method using TEOS and acetic anhydride………………………………………………… 22 Figure 1-15 A plausible mechanism of the formation of pore void suitable for the selective adsorption of steroid skeletons... 22 Figure 2-1 The structural formula of template and silanes…………. 29 Figure 2-2 Systhesis process of preparing MIP via sol gel process…... 32 Figure 2-3 Systhesis process of preparing MIP via sol gel process…... 33 Figure 3-1 Relationship between caffeine bound and pH value of MIP 40 Figure 3-2 Relationship between caffeine bound and R of MIP……… 45 Figure 3-3 Nitrogen adsorption-desorption isotherms and Pore sizedistributions of C-1, D-1………………………………….. 51 Figure 3-4 Relationship between selectivity and R of MIP…………... 52 Figure 3-5 Nitrogen adsorption-desorption isotherms and Pore size distributions of F-2………………………………………... 59 Figure 3-6 Nitrogen adsorption-desorption isotherms and Pore size distributions of F-2, F-4…………………………………... 60 Figure 3-7 Nitrogen adsorption-desorption isotherms and Pore size distributions of G-3……………………………………….. 65 Figure 3-8 Nitrogen adsorption-desorption isotherms and Pore size distributions of G-1, G-3…………………………………. 66 Figure 3-9 Nitrogen adsorption-desorption isotherms and Pore sizedistributions of H-1, H-3…………………………………. 71 Figure 3-10 TGA analysis of caffeine………………………………… 74 Figure 3-11 Different calcination temperature program……………… 75 Figure 3-12 TGA analysis of MIP prepared by different TMOS:KBM-13…………………………………………. 80 Figure 3-13 FTIR spectra of sample A-5 (A) before and (B) after calcination at 600℃……………………………………... 81 Figure 3-14 FTIR spectra of sample G-1 (A) before and (B) after calcination at 600℃……………………………………... 82 Figure 3-15 FTIR spectra of sample H-1 (A) before and (B) after calcination at 600℃……………………………………... 83 Figure 3-16 Selectivity of caffeine imprinted and non-imprinted……. 86 表索引 Table 1-1 Advantages and disadvantages of covalent and non-covalent imprinting……………………………………. 6 Table 1-2 Caffeine concentration among of the retail beverages…….. 24 Table 3-1 Preparation conditions and characteristics of MIP prepared by different pH value via sol-gel process………………….. 39 Table 3-2 Preparation conditions and characteristics of MIP prepared by different caffeine amounts via sol-gel process………….. 42 Table 3-3 Preparation conditions and characteristics of MIP prepared by different R(H2O:Si ratio) via sol-gel process................. 44 Table 3-4 Pore properties of MIP……………………………………... 49 Table 3-5 Preparation conditions and characteristics of MIP preparedby different R(H2O:Si ratio) via sol-gel process................. 50 Table 3-6 Preparation conditions and characteristics of MIP preparedby different R(H2O:Si ratio) via sol-gel process................. 54 Table 3-7 Preparation conditions and characteristics of MIP preparedby different pH via sol-gel process………………………… 57 Table 3-8 Pore properties of MIP prepared by different pH via sol-gelprocess……………………………………………………… 58 Table 3-9 Preparation conditions and characteristics of MIP preparedby different content of coupling agent via sol-gel process… 63 Table 3-10 Pore properties of MIP prepared by different content of coupling agent via sol-gel process………………………... 64 Table 3-11 Preparation conditions and characteristics of MIP preparedby different content of coupling agent via sol-gel process.. 69 Table 3-12 Pore properties of MIP prepared by different content of coupling agent via sol-gel process……............................... 70 Table 3-13 Preparation conditions and characteristics of MIP via sol-gel process and removed the template by differentcalcinations temperature………………………………….. 76 Table 3-14 Preparation conditions and characteristics of MIP viasol-gel process and removed the template by different calcinations temperature………………………………….. 77 Table 3-14 Preparation conditions and characteristics of MIPprepared by different content of coupling agent via sol-gel process…………………………………………………….. 85

    參考文獻
    [1] Olof Ramstrom, Molecular Imprinting Technology, Lund Sweden,
    1996.
    [2] L. Pauling, J. Am. Chem. Soc., 1940, 60, 2643.
    [3] http://www.smi.tu-berlin.de/story/What.htm
    [4] G. Wulff, R. Grobe-Einsler, A. Sarhan, Makromol. Chem., 1977, 178,
    2817.
    [5] K. J. Shea, T. K. Doughertly, J. Am. Chem. Soc., 1986, 108, 1091.
    [6] R. Arshady, K. Mosbach, Macromol. Chem., 1981, 182, 687.
    [7] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, Nature, 1993,
    361, 645.
    [8] A. M. Siouffi, J. Chromatogr., A 2003, 1000, 801.
    [9] F. H. Dickey, Proc. Natl. Acad. Sci., 1949, 35, 227.
    [10]A. H. Beckett, P. Anderson, Nature, 1957, 179, 1074.
    [11]G. Wulff, Chem. Rev., 2002, 102, 1.
    [12]B. Sellergren, Ed. Molecularly Imprinted Polymers, Elsevier: Amsterdam, 2001.
    [13]M. Ming, Y. Chen, Katz, Langmuir, 2002, 18, 8566.
    [14]Y.-C. Chen, C.-C. Tsai, Y.-D. Lee, J. Polym. Sci. Pol. Chem. A, 2004,
    42, 1789.
    [15]C.-Q. Liu, L. Fu, J. Economy, J. Mater. Chem.,2004, 14, 1187.
    [16]Y.-A. Shchipunov, Y.-V. Burtseva, T.-N. Zvyaguntseva, J. Biochem. Bioph. Meth., 2004, 58, 25.
    [17]M. Akram, M.-C. Stuart, Anal. Chim. Acta, 2004, 504, 243.
    [18]Q.-F. Li, R.-H. He, J.-O. Jensen, N.-J. Bjerrum, Chem. Mater., 2003, 15, 4896.
    [19]J.-H. Zhu, Y. Zhang, A. Basu, Z.-G. Lu, M. Paranthaman, D.-F. Lee, E.-A. Payzant, Surf. Coat. Tech., 2004, 177, 65.
    [20]K. Morihara, M. Takiguchi, T. Shimada, Chem. Soc. Jpn., 1994, 67, 1078.
    [21]G. Wulff, Chem. Int. Ed. Engl., 1995, 34, 1812.
    [22]S.-W. Lee, I. Ichinose, T. Kunitake, Chem. Lett.,1998, 1193.
    [23]M.-F. Lulka, J.-P. Chambers, E.-R. Valdes, R.-G. Thompson, J.-J. Valdes, Anal. Lett., 1997, 30, 2301.
    [24]A. Katz, M.-E. Davis, Nature, 2000, 403, 286.
    [25]S.-S. Iqbal, M.-F. Lulka, J.-P. Chambers, R.-G. Thompson, J.-J. Valdes, Sci. English, C2000, C7, 77.
    [26]M.-A. Markowitz, P.-R. Kust, G. Deng, P.-E. Schoen, J.-S. Dordick, D.-S. Clark, B.-P. Gaber, Langmuir, 2000, 16, 1759.
    [27]D.-Y. Sasaki, T.-M. Alam, Chem. Mater., 2000, 12, 1400.
    [28]M.-F. Lulka, S.-S. Iqbal, J.-P. Chambers, E.-R. Valdes, R.-G. Thompson, M.-T. Goode, J.-J. Valdes, Mater. Sci. English, C2000, C11, 101
    [29]S.-W. Lee, I. Ichinose, T. Kunitake, Langmuir, 1998, 14, 2857.
    [30]D. Bersani, G. Antonioli, P. PaoloLottici, T. Lopez, J. Non-Cryst. Solids, 1998, 175.
    [31]S. Wang, W. Wang, J. Zuo, Y. Qian, Mater. Chem. and Phys., 2001, 68, 246.
    [32]G. Poelz, R. Riethmuller, Nucl. Instrum. Meth., 1982, 195, 491.
    [33]S. Fireman-Shoresh, D. Avnir, S. Marx, Chem. Mater., 2003, 15, 3607.
    [34]S.-L. Gong, Z.-J. Yu, L.-Z. Meng, L. Hu, Y.-B. He, J. Appl. Polym. Sci., 2004, 93, 637.
    [35]M. Fujiwara, M. Nishiyama, I. Yamamura, S. Ohtsuki, R. Nomura, Anal. Chem., 2004, 76, 2374.
    [36]吳佳怡,“分子拓印高分子之製備”, 國立中央大學化學工程與材料工程研究所碩士論文(2003)。
    [37]鍾佳芸,“溶膠-凝膠法製備分子拓印高分子”, 國立中央大學化學工程與材料工程研究所碩士論文(2004)。
    [38]P.B. Wagh, R. Begag, G.M. Pajonk, A. Venkasteswara Rao, D. Haranath, Mater. Cham. Phys., 1999, 57, 214.
    [39]M. Jokinen, E. Gyorvary, J.-B. Rosenholm, Coll. Surf. A: Physicochem. Engng Asp., 1998, 141, 205.
    [40]C.-I. Lin, A.-K. Joseph, C.-K. Chang, Y.-C. Wang, Y.-D. Lee, Anal. Chim. Acta, 2003, 481, 175.
    [41]S. Ini, J.-L. Defreese, A. Katz, Mat. Res. Soc. Symp. Proc., 2002, 273, M2.3.1.
    [42]H.-H. Yang, S.-Q. Zhang, W. Yang, X.-L. Chen, Z.-X. Zhuang, J.-G. Xu, X.-R. Wang, J. Am. Chem. Soc., 2004, 126, 4054.
    [43]S.-R. Carter, S. Rimmer, Adv. Mater., 2002, 14, 667.
    [44]M. Han, R. Kane, M. Goto, G. Belfort, Macromolecules, 2003, 36, 4472.

    QR CODE
    :::