跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳世剛
Shih-Gang Chen
論文名稱: 利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統
Adaptive Backstepping Control of Six-Phase PMSM Position Drive System using Functional Link Radial Basis Function Network
指導教授: 林法正
Faa-Jeng Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 適應性步階迴歸控制函數連結放射狀基底函數網路數位訊號處理器六相永磁同步馬達總集不確定項李亞普諾夫穩定性
外文關鍵詞: Adaptive backstepping control, functional link radial basis function network, digital signal processor, six-phase permanent magnet synchronous motor, lumped uncertainty, Lyapunov stability
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的是研製以數位訊號處理器為基礎之適應性步階迴歸控制,並利用函數連結放射狀基底函數網路當作不確定性觀測器,用於六相永磁同步馬達定位驅動系統。首先,本研究先推導出六相永磁同步馬達以磁場導向控制的動態模型。接著,將所設計好的步階迴歸控制系統應用於定位驅動系統控制上作馬達轉子機械位置命令的追隨。由於六相永磁同步馬達定位系統上所存在的不確定項是難以預先得到的,因此在實際應用上要設計一有效益之步階迴歸控制系統是很困難的。有鑒於此,本研究提出了適應性步階迴歸控制系統,利用適應律來估測步階迴歸控制系統中的總集不確定項。但之後為了增加六相永磁同步馬達定位驅動系統的強健及精確性,使用函數連結放射狀基底函數網路當作總集不確定項之觀測器,並以補償控制器來消除其最小重建誤差。除此之外,利用李亞普諾夫穩定性理論推導出線上學習演算法,並藉由線上訓練的方式來更新函數連結放射狀基底函數網路之參數。最後,本研究以32位元浮點運算數位訊號處理器TMS320F28335完成所提出之六相永磁同步馬達定位驅動系統,且利用實驗結果來驗證所提出之智慧型適應性步階迴歸控制系統的強健控制成效。


    An adaptive backstepping control (ABSC) using a functional link radial
    basis function network (FLRBFN) uncertainty observer is proposed in this study
    to construct a high-performance six-phase permanent magnet synchronous
    motor (PMSM) position servo drive system. The dynamic model of a
    field-oriented six-phase PMSM position servo drive is described first. Next, a
    backstepping control (BSC) system is designed for the tracking of the position
    reference. Since the lumped uncertainty of the six-phase PMSM position servo
    drive system is difficult to obtain in advance, it is very difficult to design an
    effective BSC for practical applications. Therefore, an ABSC system is
    designed using an adaptive law to estimate the required lumped uncertainty in
    the BSC system. To further increase the robustness of the six-phase PMSM
    position servo drive, an FLRBFN uncertainty observer is proposed to estimate
    the lumped uncertainty of the position servo drive with a compensated
    controller to eliminate the minimum reconstructed error. In addition, an onl ine
    learning algorithm is derived using Lyapunov stability theorem to learn the
    parameters of the FLRBFN online. Finally, the proposed position control
    system is implemented in a 32-bit floating-point DSP, TMS320F28335. The
    effectiveness and robustness of the proposed intelligent ABSC system are
    verified by some experimental results.

    中文摘要 ................................................................................................................. I 英文摘要 ............................................................................................................... II 誌謝 ...................................................................................................................... III 目錄 ...................................................................................................................... IV 圖目錄 ................................................................................................................ VII 表目錄 .................................................................................................................. XI 第一章 緒論 ........................................................................................................ 1 1.1 研究動機與目的 ............................................................................. 1 1.2 文獻回顧 ......................................................................................... 3 1.3 論文大綱 ......................................................................................... 6 1.4 論文貢獻 ......................................................................................... 7 第二章 六相永磁同步馬達驅動系統之控制板 ................................................ 8 2.1 前言 ................................................................................................. 8 2.2 TMS320F28335 數位訊號處理器簡介 .......................................... 9 2.3 TMS320F28335 周邊功能 ............................................................ 12 2.3.1 脈波寬度調變模組 ............................................................. 12 2.3.2 中斷訊號 ............................................................................. 14 2.3.3 類比/數位轉換模組 ........................................................... 15 2.3.4 正交編碼器脈衝模組 ......................................................... 16 2.3.5 串列周邊介面模組 ............................................................. 18 2.4 以DSP 為基礎的六相永磁同步馬達控制系統 ......................... 20 2.4.1 TMS320F28335 控制卡 ...................................................... 20 2.4.2 TMS320F28335 介面板 ...................................................... 21 2.4.3 周邊電路擴充控制板 ......................................................... 22 2.5 周邊擴充控制板之電路 .............................................................. 23 2.5.1 類比/數位轉換電壓準位轉換電路 ................................... 23 2.5.2 脈波寬度調變轉換電路..................................................... 24 2.5.3 過電流保護電路 ................................................................. 25 2.5.4 數位/類比轉換電路 ........................................................... 26 2.5.5 編碼器之解碼電路 ............................................................. 27 第三章 六相永磁同步馬達驅動系統 .............................................................. 28 3.1 前言 ............................................................................................... 28 3.2 六相永磁同步馬達....................................................................... 30 3.3 六相永磁同步馬達數學動態模型 .............................................. 31 3.4 座標轉換之電壓及電磁轉矩方程式 .......................................... 32 3.5 空間向量脈波寬度調變 .............................................................. 36 3.6 六相永磁同步馬達控制架構 ...................................................... 48 第四章 六相永磁同步馬達之適應性步階迴歸控制系統 .............................. 51 4.1 前言 ............................................................................................... 51 4.2 步階迴歸控制系統....................................................................... 52 4.2.1 步階迴歸控制 .................................................................... 52 4.2.2 步階迴歸控制法則及穩定性證明 .................................... 55 4.2.3 實驗結果與討論 ................................................................ 56 4.3 適應性步階迴歸控制系統 ........................................................... 63 4.3.1 適應性步階迴歸控制 ......................................................... 63 4.3.2 適應性步階迴歸控制法則及穩定性證明 ......................... 64 4.3.3 實驗結果與討論 ................................................................. 66 第五章 六相永磁同步馬達之適應性步階迴歸控制利用函數連結放射狀基 底函數網路不確定性觀測器 .............................................................. 71 5.1 前言 ............................................................................................... 71 5.2 類神經網路與模糊邏輯 .............................................................. 72 5.3 函數連結放射狀基底函數網路 ................................................... 76 5.4 適應性步階迴歸控制利用函數連結放射狀基底函數網路不確定 性觀測器 ........................................................................................ 81 5.5 適應性步階迴歸控制利用函數連結放射狀基底函數網路不確定 性觀測器控制法則及穩定性證明 ............................................... 83 5.6 實驗結果與討論 ............................................................................ 86 第六章 結論與未來展望 .................................................................................. 91 6.1 結論 ............................................................................................... 91 6.2 未來展望 ....................................................................................... 93 參考文獻 .............................................................................................................. 94 作者簡歷 ............................................................................................................ 101

    [1] Y. Zou and Z. Zheng, “A robust adaptive RBFNN augmenting backstepping
    control approach for a model-scaled helicopter,” IEEE Trans. Control Syst.
    Technol., vol. 23, no. 6, pp. 2344–2352, Nov. 2015.
    [2] C. H. Lin, M. K. Lin, R. C. Wu, and S. Y. Huang, “Integral backstepping
    control for a PMSM drive using adaptive FNN uncertainty observer,” in
    Proc. IEEE Conf. Ind. Electron., pp. 668-673, May 2012.
    [3] L. Yi and P. Yonghong, “Application of fuzzy neural network in the speed
    control system of induction motor,” in Proc. IEEE Conf. Comput. Sci.
    Autom. Eng., pp. 673-677, Jun. 2011.
    [4] H. H. Choi, H. M. Yun, and Y. Kim, “ Implementation of evolutionary
    fuzzy PID speed controller for PM synchronous motor,” IEEE Trans. Ind.
    Informat., vol. 11, no. 2, pp. 540–547, Apr. 2015.
    [5] Google DeepMind, ht tp: / /marketbusinessnews.com/ar t i f icial -
    intelligence-stunned-experts-and-won-at-toughest-game-ever/122552
    [6] Roborace, http://www.pcworld.com/article/3050716/meet-robocarthe-
    dr ive r l e s s - r a c ing -car- for -the- a i -powe r ed - robor a c e .html
    [7] Sony, ht tp: / /www.ki tguru.net /per ipherals/anton -shi lov/sonys -
    playstation-vr-headset-will-cost-like-a-new-game-console-says-company/
    [8] J. C. Salmon and B. W. Williams, “A split-wound induction motor design to
    improve the reliability of PWM inverter drives,” IEEE Trans. Ind. Appl., vol.
    26, no. 1, pp. 143–150, Jan./Feb. 1990.
    [9] R. O. C. Lyra and T. A. Lipo, “Torque density improvement in a six-phase
    induction motor with third harmonic current injection,” IEEE Trans. Ind.
    Appl., vol. 38, no. 5, pp. 1351–1360, Sep./Oct. 2002.
    [10] S. Karugaba and O. Ojo, “A carrier-based PWM modulation technique for
    balanced and unbalanced reference voltages in multiphase voltage-source
    inverters,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2102–2019, Nov./Dec.
    2012.
    95
    [11] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson,
    “Overview of electric motor technologies used for more electric aircraft
    (MEA),” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3523–3531, Sep.
    2012.
    [12] A. Cavagnino, Z. Li, A. Tenconi, and S. Vaschetto, “Integrated generator
    for more electric engine: Design and testing of a scaled size prototype,”
    IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2034–2043, Sep./Oct. 2013.
    [13] H. S. Che, E. Levi , M. Jones, M. J. Duran, W. P. Hew, and N. A. Rahim,
    “Operation of a six-Phase induction machine using series-connected
    machine-side converters,” IEEE Trans. Ind. Electron.,vol. 61, no. 1, pp.
    164–176, Jan. 2014.
    [14] E. Levi, “Multiphase electric machines for variable-speed applications,”
    IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893–1909, May 2008.
    [15] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing:
    A Computational Approach to Learning and Machine Intelligence.
    Englewood Cliffs, NJ: Prentice-Hall, 1997.
    [16] F. J. Lin, L. T. Teng, C. Y. Chen, and Y. C. Hung, “FPGA-based adaptive
    backstepping control system using RBFN for linear induction motor
    drive,” IET Electr. Power Appl., vol. 2, no. 6, pp. 325-340, Nov. 2008.
    [17] C. N. Huang and A. Chung, “An intelligent design for a PID controller for
    nonlinear systems,” Asian J. Control, vol. 18, no. 1, pp. 1–9, Mar. 2016.
    [18] L. Ciabattoni, M. L. Corradini, M. Grisostomi, G. Ippoliti, S. Longhi and
    G. Orlando, “A discrete-time VS controller based on RBF neural networks
    for PMSM drives,” Asian J. Control, vol. 16, no. 2, pp. 396–408, Mar.
    2014.
    [19] J. C. Patra and R. N. Pal, “A functional link artificial neural network for
    adaptive channel equalization,” Signal Processing, vol. 43, pp. 181-195,
    May 1995.
    [20] K. A. Toh and W. Y. Yau, “Fingerprint and speaker verification decisions
    96
    fusion using a functional link network,” IEEE Trans. Syst., Man, and
    Cybern. C, Appl. Rev., vol. 35, no. 3, pp. 357-370, Aug. 2005.
    [21] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-programmable
    gate array-based functional link radial basis function network control for
    permanent magnet linear synchronous motor servo drive system,” IET
    Electr. Power Appl., vol. 4, no. 5, pp. 357-372, May 2010.
    [22] D. Zhao, W. Chen, J. Wu, and J. Li, “Globally stable adaptive tracking
    control for uncertain strict-feedback systems based on neural network
    approximation,” Asian J. Control, vol. 18, no. 1, pp. 1–12, Mar. 2016.
    [23] F. J. Lin, L. T. Teng, and C. K. Chang, “Adaptive backstepping control for
    linear-induction-motor drive using FPGA,” IET Electr. Power Appl., vol.
    153, no. 4, pp. 483–492, Jul. 2006.
    [24] C. C. Tsai, Y. Y. Li, F. C. Tai, and C. H. Lu, “Intelligent adaptive motion
    control using fuzzy basis function networks for electric unicycle,” Asian J.
    Control, vol. 17, no. 3, pp. 993–156, May 2015.
    [25] H. J. Shieh and K. K. Shyu, “Nonlinear sliding-mode torque control with
    adaptive backstepping approach for induction motor drive,” IEEE Trans.
    Ind. Electron., vol. 46, no. 2, pp. 380–389, May 1999.
    [26] F. J. Lin and C. C. Lee, “Adaptive backstepping control for linear
    induction motor drive to track periodic references,” IEE Proc., Electr.
    Power Appl., vol. 147, no. 6, pp. 449–458, Nov. 2000.
    [27] J. J. E. Slotine, and W. Li, Applied nonlinear control. Englewodd Cliffs,
    NJ: Prentice-Hall, 1991.
    [28] MS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
    TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data
    Manual, Texas Instruments, Jun. 2007.
    [29] 楊凱捷,“利用遞迴式模糊類神經小腦模型網路之錯誤容忍控制六相
    永磁同步馬達定位驅動系統”,碩士論文,中央大學電機系,民國一
    97
    百零三年。
    [30] 許尚文,“六相永磁式同步電動機之設計與控制”,碩士論文,台灣
    科技大學電機系,民國九十五年。
    [31] 王俊超,“六相永磁式同步電動機驅動器之分析與設計”,碩士論文,
    台灣科技大學電機系,民國九十四年。
    [32] 吳泰廷,“六相永磁式同步電動機驅動系統之故障後控制策略”,碩
    士論文,台灣科技大學電機系,民國九十八年。
    [33] B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall,
    Saddle River, NJ, 2002.
    [34] S. J. Kim, et al., “Robust torque control of DC link voltage fluctuation for
    SynRM considering inductances with magnetic saturation,” IEEE Trans.
    Magn., vol. 46, no. 9, pp. 3705–3708, Jun 2010.
    [35] F. J. Lin, Y. C. Hung and M. T. Tsai, “Fault-tolerant control for six-phase
    PMSM drive system via intelligent complementary sliding-mode control
    using TSKFNN-AMF”, IEEE Trans. Ind. Electron., vol. 60, no. 12, pp.
    5747–5762, Dec. 2013.
    [36] F. J. Lin, Y. C. Hung, J. C. Hwang and M. T. Tsai, “Fault-tolerant control
    of a six-phase motor drive system using a Takagi–Sugeno–Kang type
    fuzzy neural network with asymmetric membership function”, IEEE Trans.
    Power Electron., vol. 28, no. 7, pp. 3557–3572, Jul. 2013.
    [37] 劉昌煥,『交流電機控制:向量控制與直接轉矩控制原理-第四版』,
    東華書局股份有限公司,2013年。
    [38] P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE
    Control. Syst. Mag., vol. 12, pp. 7–17, Jun. 1992.
    [39] M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic, Nonlinear and
    Adaptive Control Design, New York: Wiley, 1995.
    [40] C. K. Lin, L. C. Fu, T. H. Liu, and B. H. Chou, “Passivity-based adaptive
    backstepping PI sliding-mode position control for synchronous reluctance
    98
    motor drives,” Asian Control Conf. 8th, pp. 245-250, May 2011.
    [41] R. J. Wai and H. H. Chang, “Backstepping wavelet neural network control
    for indirect field-oriented induction motor drive,” IEEE Trans. Neural
    Netw., vol. 15, no. 2, pp. 367–82, Mar. 2004.
    [42] Z. Li, C. Y. Su, G. Li, and H. Su, “Fuzzy approximation-based adaptive
    backstepping control of an exoskeleton for human upper limbs,” IEEE
    Trans. Fuzzy Syst., vol. 23, no. 3, pp. 555–566, Jun. 2015.
    [43] C. C. Liao, C. H. Chen, Y. F. Peng, and S. C. Wu, “A combined
    backstepping and wavelet neural network control approach for mechanical
    system,” Asian Control Conf. (ASCC) 9th, pp. 1–6, Jun. 2013.
    [44] D. Mayne, “Nonlinear and Adaptive Control Design-M. Kristic, I.
    Kanellakopoulis, and P. V. Kokotovic (New York: Wiley, 1995),” IEEE
    Trans. Autom. Control, vol. 41, no. 12, pp. 1849–1853, Dec.1996. (Book
    Review).
    [45] J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, and O. D.
    Ramírez-Cárdenas, “Robust backstepping tracking controller for
    low-speed PMSM positioning system: design, analysis, and
    implementation, ” IEEE Trans. Ind. Informat., vol. 11, no. 5, pp.
    1130–1141, Oct. 2015.
    [46] J. A. Primbs, V. Nevistic, and J. C. Doyle, “Nonlinear optimal control: a
    control Lyapunov function and receding horizon perspective,” Asian J.
    Control, vol. 1, no. 1, pp. 14–24, Mar. 1999.
    [47] C. C. Yang, “Robust adaptive terminal sliding mode synchronized control
    for a class of non-autonomous chaotic systems,” Asian J. Control, vol. 15,
    no. 6, pp. 1677–1685, Nov. 2013.
    [48] 林俊良,『智慧型控制-分析與設計』,台北市,全華圖書股份有限公
    司,2008年。
    [49] A. Sahoo, H. Xu, and S. Jagannathan, “Adaptive neural network-based
    99
    event-triggered control of single-input single-output nonlinear
    discrete-time systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
    1, pp. 151–164, Jan. 2016.
    [50] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems. Englewood Cliffs,
    NJ, USA: Prentice-Hall, 1996.
    [51] F. J. Lin and P. H. Chou, “Robust Fuzzy-neural-network sliding-mode
    control for two-axis motion control system,” IEEE Trans. Ind. Electron.,
    vol. 53, no. 4, pp. 1209–1225, Jun. 2006.
    [52] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and prediction of
    dynamic systems using an interactively recurrent self-evolving fuzzy
    neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp.
    310–321, Feb. 2013.
    [53] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems.
    Addison-Wiley, 2005.
    [54] 王進德,『類神經網路與模糊控制理論入門與應用』,台北市,全華科
    技圖書股份有限公司,2008年。
    [55] F. J. Lin, R. J. Wai, and R. Y. Duan, “Fuzzy neural networks for
    identification and control of ultrasonic motor drive with LLCC resonant
    technique,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 999–1011, Oct.
    1999.
    [56] Y. H. Pao, S. M. Phillips, and D. J. Sobajic, “Neural-net computing and
    intelligent control systems,” Int. J. Control., vol. 56, no. 2, pp. 263–289,
    1992.
    [57] J. C. Patra and R. N. Pal, “Functional link artificial neural network-based
    adaptive channel equalization of nonlinear channels with QAM signal, ”
    IEEE Int. Conf. on Syst., Man, and Cybern., vol. 3, pp. 2081–2086, Oct.
    1995.
    [58] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of
    100
    nonlinear dynamic systems using functional link artificial neural
    networks,” IEEE Trans. Syst., Man, and Cybern. B, Cybern., vol. 29, no.
    1, Apr. 1999.
    [59] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
    learning algorithm for radial basis function networks,” IEEE Trans. Neural
    Netw., vol. 2, no. 1, pp. 302-309, Mar. 1991.
    [60] J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis
    function networks and fuzzy inference systems,” IEEE Trans. Neural
    Netw., vol. 4, no. 4, pp. 156-159, Mar. 1993.
    [61] H. Yu, T. Xie, S. Paszczyñski, and B. M. Wilamowski, “Advantages of
    radial basis function networks for dynamic system design” IEEE Trans.
    Ind. Electron., vol. 58, no. 12, pp. 5438–5450, Dec. 2011.
    [62] J. X. Peng, K. Li, and D. S. Huang, “A hybrid forward algorithm for RBF
    neural network construction,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp.
    1439–1451, Nov. 2006.
    [63] P. H. Shen and F. J. Lin, “Intelligent backstepping sliding-mode control
    using RBFN for two-axis motion control system,” IET Electr. Power Appl.,
    vol. 152, no. 5, pp. 1321–1342, Sep. 2005.
    [64] J. Tian, M. Li, F. Chen, and N. Feng, “Learning subspace-based RBFNN
    using coevolutionary algorithm for complex classification tasks,” IEEE
    Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 47-61, Jan. 2016.
    [65] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li, “Intelligent controlled
    wind-turbine emulator and induction-generator system using RBFN,” IET
    Electr. Power Appl., vol. 153, no. 4, pp. 608–618, Jul. 2006.
    [66] T. Pajchrowski, K. Zawirski, and K. Nowopolski, “Neural speed controller
    trained online by means of modified RPROP algorithm,” IEEE Trans. Ind.
    Informat., vol. 11, no. 2, pp. 560–568, Apr. 2015.

    QR CODE
    :::