跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳俊中
Chun-Chung Chen
論文名稱: 剪力槽中粒子混合機制研究
Granular mixing in the shear cell
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 粒子流混合
外文關鍵詞: granular, mixing
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在剪力槽粒子混合實驗中,本實驗利用影像分析方法量測兩種不同顏色粒子之混合層隨時間的變化,並且計算出粒子擴散係數、粒子溫度以及剪率種種數據相互比較。其中,粒子溫度搭配擴散方程式可計算出混合層中的濃度變化,進而推測理論上混合層隨時間變化之關係,並且與實驗做比較。在本文中,有效擴散係數Deff是一個重要的參數,代表流場混合快慢的指標,而這個參數也與底盤轉速、平均粒子溫度與剪率做比較,觀察其趨勢的變化。本實驗發現底盤轉速,也就是剪力槽系統所供應的能量對粒子的混合有很大的影響,另外,在混合初始時,混合層隨時間變化較明顯。而在參數的比較方面,發現當轉速增加時,有效擴散係數與平均粒子溫度以及剪率都呈現正相關。


    The experiments of particle mixing were performed in a shear cell device with five different bottom wall velocities. The glass spheres with a mean diameter of 2 mm were used as granular materials. The mixing processes of the granular materials were recorded by a high-speed camera. The image processing technology and particle tracking method were employed to analysis the granular mixing and the diffusion of particles. In this paper, the effective diffusion coefficient is an important parameter. The effective diffusion coefficients were increase with the increase of the bottom wall velocities, average granular temperatures, and shear rates near the top wall. The FDM was also used to calculate the concentration profiles that were compared to the experiment data.

    摘要…………………………………………………..……..……i 目錄……………………………………………………………ii 附表目錄……………………………………….……………..…v 附圖目錄……………………………………………………..…vi 符號說明……………………………………………………..…ix 第一章 簡介...........................................…..............................…1 1.1 粒子流簡介....................................……....................…1 1.2 顆粒體混合現象之介紹....................….................…...2 1.3 剪力流的研究歷史…...............…..........................…...4 1.4 研究方向與架構...........................………..............…...6 第二章 實驗方法與原理………………...……………………..8 2.1 實驗設備...................................................................….8 一、 剪力槽裝置………………………………………8 二、 顆粒體……………...………………………….…10 三、觀測及量測儀器…………………………..……...11 2.2 實驗原理......................................................................13 一、 影像處理與混合層厚度之分析方法……………13 二、 粒子溫度的概念…………………………………16 三、 自我擴散理論…………………………………...17 四、 混合層內的擴散方程式…………………...……18 2.3 實驗步驟.........................…………………….……...….21 混合層厚度的量測……….…...……………………….21 二、 擴散係數的量測…………………………………23 2.4 誤差校正..........................…………….…………….......25 一、 誤差來源……………………………………….25 二、 誤差校正(Calibration)…………………………….26 第三章 結果與討論................................................……….......28 3.1 混合層隨時間變化關係圖…………………………….27 3.2 混合層內濃度之理論分析與計算……………………....30 3.3 混合層內之有效擴散係數、擴散速率、平均粒子溫度與 剪率………………………………………...……..….….32 3.4 混合層隨時間變化之實驗數據與理論計算之比較....36 第四章 結論...................................................……….......38 參考文獻...........................................................................40


    Armour-Chélu, D.I.; Woodhead, S.R.; Barnes, R.N., 1998, “The electrostatic charging trends and signal frequency analysis of a particulate material during pneumatic conveying,” Powder Technol., Vol. 96, pp. 181-189.
    Brone, D., Alexander, A., and Muzzio, F. J., 1998, “Quantitative characterization of mixing of dry powders in V-blenders,” AIChe. J., Vol. 44, No. 2, pp. 271-278.
    Campbell, C. S. and Brennen, C. E., 1985a, “Computer Simulation of
    Granular Shear Flows,” J. Fluid Mech., Vol. 151, pp. 167-188.
    Campbell, C. S. and Brennen, C. E., 1985b, “Chute Flows of Granular
    Material: Some Computer Simulations,” J. Appl. Mech., Vol. 52, pp.
    Campbell, C. S., 1997, “Self-Diffusion in Granular Shear Flows,”
    Submitted to J. Fuild Mech., Vol. 348. pp. 85-101.
    Einstein, A., 1956, “Investigations on the Theory of the Brownian
    Movement,” (ed. R. Furth) Dover Publications Inc.
    Elperin, T., and Vikhansky, A., 1998, “Kinematics of the mixing of granular materials in slowly rotating containers,” Europhys. Lett., pp. 17-22.
    Gotoh, k., Musuda, H., and Higashitani, K., 1997, Powder Technology Handbook.(Marcel Dekker, New York).
    Halsey, T .C., and Levine, A. J., 1998, Phys. Rev. Lett, Vol. 80, pp. 3141-3144.
    Henrique, C., Batrouni, G., and Bideau, D., 2000, “Diffusion as a mixing mechanism in granular materials,” Phys. Rev. E, Vol. 63, No.1, pp. 1304.
    Hoornaert, Frederik; Wauters, Philippe A.L.; Meesters, Gabrie M.H.; Pratsinis, Sotiris E.; et. al., 1998, “Agglomeration behavior of powders in a Lödige mixer granulator,” Powder Technol., Vol. 96, pp. 116-128.
    Hsiau, S. S. and Hunt, M. L., 1993a, “Shear-Induced Particle Diffusion
    and Logitndinal Velocity Fluctuations in a Granular-Flow Mixing
    Layer,” J. Fluid Mech., Vol. 251, pp. 299-313.
    Hsiau, S. S. and Hunt, M. L., 1993b, “Kinetic Theory Analysis of Flow-
    Induced Particle Diffusion and Thermal Conduction in Granular
    Material Flows,” J. Heat Transfer, Vol. 115, pp. 541-548.
    Hsiau, S. S., and Yang W. L., 2002, “Stress and transport phenomena in sheared granular flows with different wall conditions,” Phys. Fluids, Vol. 14, No. 2, pp. 612-621.
    Hvorslev, M. J., 1936, “A Ring Shearing Apparatus for the Determination
    of the Shearing Resistance and Plastic Flow of Soil,” In Proc. Intl
    Conf. Soil Mech. Found. Engng, Cambridge, Mass., Vol. 2, pp. 125-
    129.
    Hvorslev, M. J., 1939, “Torsion Shear Tests and Their Place in the
    Determination of Shearing Resistance of Soils,” Proc. ASTM, Vol. 39,
    pp. 999-1022.
    Khakhar, D. V., McCarthy, J. J., Shinbrot, T., and Ottino, J. M., 1997, “Transvers flow and missing of granular materials in a rotating cylinder,” Phys. Fluids, Vol. 9, No. 1, pp. 31-43.
    MaCarthy, J. J., Khakhar, D. V., and Ottino, J. M., 2000, “Computational studies of granular mixing,” Powder Technol., Vol. 109, pp. 72-82.
    Mason, T. G., Levine, A. J., Ertas, D and Hasey T. C., 1999, Phys. Rev. E Vol. 60, R5044.
    Moakher, M., Shinbrot, T., and Muzzio, F. J., 2000, “Experimentally validated computations of flows, mixing and segregation of noncochesive grians in 3D tumbling blenders,” Powder Technol., Vol. 109, pp. 58-71.
    Novosad, J., 1964, “Apparatus for Measuring the Dynamic Angles of
    Internal Friction and External Friction of a Granular Material,”
    Collection Czech. Chem. Commun., Vol. 29, pp. 2697-2701.
    Rhodes, M., 1998, Introduction to Particle Technology. (John Wiley & Sons, London).
    Savage, S. B. and Dai, R., 1993, “Studies of Shear Flows. Wall slip
    Velocity, ‘Layering’ and Self-Diffusion,” Mechanics of Materials, Vol. 16, pp. 225-238, Elsevier.
    Savage, S. B. and Mckeown, S., 1983, “Shear Stress Developed during
    Rapid Shear of Dense Concentrations of Large Spherical Particles
    between Concentric Cylinders,” J. Fluid Mech., Vol. 127, pp. 453-
    472.
    Savage S. B. and Sayed, M., 1984, “Stresses Developed by Dry
    Cohesionless Granular Materials Sheared in an Annular Shear Cell,” J.
    Fluid Mech., Vol. 142, pp. 391-430.
    Savage, S. B., 1992, “Disorder, Diffusion and Structure Formation in
    Granular Flows,” in Disorder and Granular Media, D. Bideau, ed.,
    Elsevier Science Publishers, Amsterdam, pp. 225-285.
    Scarlett, B. and Todd, A. C., 1968, “A Split Ring Annular Shear Cell for
    Determination of the Shear Strength of a Powder,” Sci. Instr., Vol. 1,
    pp. 655-656.
    Scarlett, B. and Todd, A. C., 1969, “The Critical Porosity of Free Flowing Solids,” Trans. ASME B: J. Engng Ind., Vol. 91, pp. 478-488.
    Sherwood, T. K., Pigford, R. L. and Wilke, C. R., 1975, “Mass Transfer,”
    McGraw Hill.
    Staniforth, J. N., and Rees, J. E., 1982, “Electrostatics charge interactions in ordered powder mixes,” J. Pharmacy and Pharmacology, Vol. 34, pp. 69-76.
    Stephens, D. J. and Bridgwater, J., 1978a, “The Mixing and Segregation
    of Cohesionless Particulate Materials. Part I. Failure Zone Formation,”
    Powder Tech., Vol. 21, pp. 17-28.
    Stephens, D. J. and Bridgwater, J., 1978b, “The Mixing and Segregation
    of Cohesionless Particulate Materials. Part II. Microscopic
    Mechanisms for Particles Differing in size,” Powder Tech., Vol. 21, pp. 29-44.
    Venables, H. J., and Wells, J. I., 2001, “Powder mixing,” Drug Development and Industrial Pharmacy, Vol. 27, No. 7, pp. 599-612.
    Wang, D. G. and Campbell, C. S., 1992, “Reynolds Analogy for a Shearing Granular Msterials,” J. Fluid Mech., Vol. 244, pp. 527-546.
    Zik, and J.Stavans., 1991, “Self-Diffusion in Granular Flow,” Europhys.
    Lett., 16, pp. 255-258.

    QR CODE
    :::