| 研究生: |
簡盛宥 Sheng-Yu Chien |
|---|---|
| 論文名稱: |
砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析 Dark and Illumination Characteristics of InGaAs/InP Single Photon Avalanche Diodes |
| 指導教授: |
李依珊
Yi-Shan Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 雪崩型崩潰光二極體 、磷化銦 、砷化銦鎵 |
| 外文關鍵詞: | avlanche |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷化銦鎵/磷化銦單光子雪崩型偵測器用於近紅外光波段光纖通訊,但
此材料磊晶時容易產生缺陷,因此相較於矽製程的單光子雪崩型偵測器,
有較高的暗計數,使得許多應用受限於暗計數而無法做微弱光之偵測。本
論文將在不同溫度下分析暗計數的產生機制,我們運用閘控模式操作元件
並將元件溫度降至77K。由結果可觀察各溫度區間是由不同的暗計數機制主
導,高溫區(200-300K)的暗計數來源為熱產生載子,低溫區(77-125K)由二
次崩潰主導,而中間溫度區暗計數較低,為穿隧載子所貢獻,但此區在溫
度變化時暗計數出現局部極值,為了探討此現象,我們改變元件內部電場,
發現暗計數局部極值發生的溫度會跟著偏移,推論此溫度區間的暗計數與
電場相關,然而與電場相關的穿隧效應並不會造成此現象,因此我們將暗計
數局部極值歸因於電荷堆積效應。為了驗證此論點,我們進行照光量測,藉
由改變雷射入射元件的時間點觀察光計數的變化,可發現在150K下,亦即暗
計數發生局部極值時,光計數也有嚴重的電荷堆積效應;而在200K下,因熱
產生載子被大量抑制,電荷堆積的效應不明顯,隨著溫度上升,電荷堆積的
效應又會隨之出現,由結果可得出不僅是光產生載子會造成電荷堆積效應,
熱產生載子亦是電荷堆積效應的電荷來源。我們還在125K到175K之間量測元
件的光偵測效率,發現電荷堆積效應除了對暗計數有直接影響外,在此溫度
區間也會讓元件的PDE被高估。
InGaAs/InP single photon avalanche diodes are of great potential in the
application of near-infrared optical fiber communication. However, comparing
to Si single photon avalanche diodes, InGaAs/InP single photon avalanche
diodes have higher dark count due to its material and structural characteristics.
In this thesis, we characterize the dark count performance at different
temperature ranges by operating the device under gated mode with frequency of
10 kHz and voltage pulse width of 20 ns. The device is cooled down to 77 K by
using liquid nitrogen. From the experiments, different mechanisms are dominant
over different temperature ranges. In high temperature region (200 K-300 K),
the dark counts originate from the thermal generation. For the low temperature
region (77 K-125 K), afterpulsing dominates. While in the intermediate
temperature region (125 K-200 K), the dark count rates should be restricted to
the tunneling carriers, however, a non-monotonic behavior in the dark count
performance is observed, that is, a local maximum of dark count rates occurs at
around 150 K. In order to study this phenomenon, we vary the internal electric
field and found that the local maximum shifts to lower temperature, showing
that the local maximum is sensitive to the internal electric field and hence is
attributed to the charge persistence effect.
To further evidence this argument, we illuminate the device with a
time-varying incoming pulse laser. It is found that the charge persistence effect
gets most serious at 150 K, where the local maximum of dark count rate occurs.
At 200 K, where the thermal carriers are greatly suppressed, the device is almost
free from the charge persistence effect. The investigation reflects that the charge
persistence effect is involved in the intermediate temperature rage and it is
iii
caused not only by the photo-generated carriers but also by the
thermal-generated carriers. We also attempt to see the impact of charge
persistence effect on the photon detection efficiency. Our results reveal that the
photon detection efficiency could be overestimated due to the existence of
charge persistence effect.
[1] George M. Williams, Jr. "Optimization of eyesafe avalanche photodiode
lidar for automobile safety and autonomous navigation systems, "Opt. Eng,
Vol. 56, pp. 031224-1–031224-9, Mar. 2017
[2] S. Pellegrini, et al, "Design and performance of an InGaAs–InP
single-photon avalanche diode detector," IEEE J. Quantum Electronics, Vol.
42, pp. 397–403, Mar. 2006.
[3] A. Tosi, et al, "InGaAs/InP single-photon avalanche diodes show low dark
counts and require moderate cooling," Proc. of SPIE , Vol. 7222, pp.
72221G-1–72221G-9, Jan. 2009.
[4] Chong Hu, et al, "Characterization of an InGaAs/InP-based single-photon
avalanche diode with gated-passive quenching with active reset circuit"
Journal of Modern Optics, Vol. 58, pp. 201–209, Feb. 2011
[5] Mingguo Liu, et al, "Low Dark Count Rate and High Single Photon
Detection Efficiency Avalanche Photodiode in Geiger-mode Operation"
IEEE Photon. Technol, Vol. 19, pp. 378 –380, Mar. 2007
[6] Alberto Tosi, et al, "InGaAs/InP SPADs for near-infrared
applications:device operating conditions and dedicated electronics," Proc. of
SPIE , Vol. 7681, pp. 76810R-1–76810R-12, Apr. 2010
[7] Tommaso Lunghi, et al, "Advantages of gated silicon single-photon
detectors," Applied Optics, Vol. 51, pp. 8455–8459, Dec. 2012
[8] A. Dalla Mora, et al, "Afterpulse-like noise limits dynamic range in
time-gated applications of thin-junction silicon single-photon avalanche
diode," Appl. Phys. Lett. Vol. 100, pp. 241111-1–241111-4, Jun. 2012.
[9] Sergio Cova, et al, "Avalanche photodiodes and quenching circuits for
47
single-photon detection," APPLIED OPTICS , Vol. 35, pp. 1956-1976, Apr.
1996
[10] K. Sugihara, E. Yagyu, and Y. Tokuda, "Numerical analysis of single
photon detection avalanche photodiodes operated in the Geiger mode,"
Journal of Applied Physics, Vol. 99, pp. 124502-1–124502-5, Jun. 2006
[11] W. Shockley, W. T. Read, "Statistics of the Recombinations of Holes and
Electrons," Physical Review, Vol. 87, pp. 835-842, Sep. 1952
[12] Xudong Jiang, et al, "InGaAsP–InP Avalanche Photodiodes for Single
Photon Detection," IEEE J. Quantum Electronics, Vol. 13, pp. 895-905,
Jul./Aug. 2007
[13] Franco Zappa, Alberto Tosi, Sergio Cova, "InGaAs SPAD and electronics
for low time jitter and low noise," Proc. of SPIE, Vol. 6583, pp. 65830E-1–
65830E-12, Mar. 2007
[14] M. Gallant and A. Zemel, "Long minority hole diffusion length and
evidence for bulk radiative recombination limited lifetime in
InP/InGaAs/InP double heterostructures, " Appl. Phys. Lett., Vol. 52, pp.
1686–1688, Mar. 1988
[15] Niccolò Calandri, et al, "Charge Persistence in InGaAs/InP Single-Photon
Avalanche Diodes" IEEE J. Quantum Electronics, Vol. 52, no. 3, Mar.
2006.
[16] Lionel Juen Jin Tan, et al, "Temperature Dependence of Avalanche
Breakdown in InP and InAlAs," IEEE J. Quantum Electron , Vol. 46,
pp.1153-1157, Aug. 2010
[17] J. James, et al, "Electrical characterization and alloy scattering measurements
of LPE GaxIn1-xAs/InP for high frequency device applications," Journal of
Crystal Growth, Vol. 54, pp. 64-68, Jul. 1981
48
[18] Mingguo Liu, et al, High-Performance InGaAs/InP Single-Photon, IEEE J.
Quantum Electronics, Vol. 13, pp.887-894, Jul./Aug. 2007
[19] Alberto Tosi, et al, "Low-Noise, Low-Jitter, High Detection Efficiency
InGaAs/InP Single-Photon Avalanche Diode," IEEE J. Quantum
Electronics , Vol. 20, NO. 6, Nov./Dec. 2014
[20] Mark A. Itzler, et al, "Large-hole diffusion length and lifetime in
InGaAs/InP double-heterostructure photodiodes," Electron. Lett, Vol. 22, pp.
360-362, Mar. 1986
[21] Chong Hu, et al, "Advantages and demonstration of gated-mode passive
quenching with active reset circuit," IEEE, No. 14808581, pp. 953-956, Dec.
2014