跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳鎮傑
Chen-Chieh Chen
論文名稱: 使用自然電位觀測輔助一維非飽和層滲流參數推估
Estimations of unsaturated hydraulic parameters in 1D soil column by using self-potential observations
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 自然電位法飽和度TDR砂柱試驗HYDRUS – 1D模式
外文關鍵詞: Self-Potential technique, saturation, TDR, sand column test, HYDRUS – 1D model
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含水層的非飽和層物理特性與特徵參數是決定地表下的氣體、水和溶質傳輸非常重要的因子,藉由各種試驗、儀器與地球物理方法來探討就顯得非常重要。本研究之目的為利用自然電位法配合實驗室砂柱實驗,找出電場、真實含水量兩者間對應的關係,並嘗試推估壓流電位(Streaming potential),將訊號即時反應當地含水量,以求能了解地下含水層的水文地質參數。本研究先利用一維砂柱進行二組砂樣(#30、#60)的入滲試驗,並利用TDR(Time Domain Reflectometry)量測入滲時砂樣真實含水量資料,結合測量砂柱內的自然電位法訊號,輔助觀測找出非飽和層土壤含水量等滲流參數之間的關係。本研究另外藉由土壤特徵曲線試驗以及落水頭試驗,代入RETC(Retention Curve)模式反推估出砂樣的土壤特徵參數,並與砂柱實驗結果反推估的參數做討論。試驗結果顯示(1)砂柱中的濕鋒移動過程可即時反應於自然電位訊號,會因為砂樣的粒徑粗細、飽和狀態與TDR同時施測與否造成電位差異。(2)自然電位訊號與含水量的關係在#30與#60砂樣中皆呈現與驗證組不同的結果。(3)依據土壤特徵曲線與砂柱試驗中含水量資料反推估的參數,在#30砂樣:殘餘含水量(θr)顯示相差一個order,空氣入滲係數(α)顯示相差0.072,材料孔隙係數(n)相差兩倍;在#60砂樣:θr顯示相差0.017左右,α顯示相差0.057,n顯示相差0.31左右。結果反應差異頗大,來自砂樣建模與量測方法不同所造成。(4)將自然電位訊號利用VG公式反推估含水量變化在#30砂中有較好的的結果。


    The hydraulic properties in unsaturated soils control the movement of gas, water and solute in shallow aquifer systems. It is crucial to obtain such hydraulic parameters for accurate predictions of flow and contaminant transport in unsaturated soils. This study aims to obtain the relationship of streaming potential and water content dring an infiltration process and uses the self-potential observations to assess the estimations of unsaturated hydraulic parameters for soils. A one-dimensional sand column with #30 & #60 sand was used to conduct constant head infiltration tests. The variation of water content in the column was measured by TDR (Time Domain Reflectometry) during the infiltration test. The observations of the infiltration test in a vertical sand column are then used in HYDRUS-1D model to obtain parameters of the Van Genuchten formula. The results show that the migration of the wetting front in the sand column can be detected in real-time by the self-potential observations. However, the measured signals might be influenced by the grain sizes、TDR signals and saturation conditions. The results of self-potential observations and water content are different in #30 and #60 sand cases. The results of estimated water content in #30 sand case show better estimation of Van Genuchten formula as compared with the results of pressure plate estimations.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 符號表 xi 第一章 緒論 1 1.1 背景與動機 1 1.2 研究目的 2 1.3 研究流程與論文架構 3 第二章 文獻回顧 6 2.1 自然電位法概述 6 2.2 含水量與壓流電位(Streaming Potential) 8 2.3 一維自然電位砂柱實驗 10 第三章 研究方法 14 3.1 自然電位法 15 3.2 一維自然電位砂柱實驗 23 3.3 數值模式 30 3.4 土壤特徵曲線試驗 32 第四章 結果 36 4.1 電場穩定度測試 36 4.2 自然電位之量測結果SP 38 4.3 TDR之量測結果 48 4.4 土壤特徵曲線試驗結果 53 4.5 HYDRUS 1D反推估含水量變化結果 56 第五章 討論 59 5.1 自然電位與TDR量測結果相關性討論 59 5.2 自然電位量測結果之意義 64 5.3 TDR在試驗中對自然電位訊號的影響結果 73 5.4 土壤特徵曲線試驗與模擬結果比較 76 5.5 自然電位訊號與VG公式反推估含水量結果 77 第六章 結論 84 第七章 建議 86 參考文獻 87

    〔1〕洪雋倫,「利用自然電位法監測淺層土壤入滲歷程」,國立中央大學,碩士
    論文,民國103年。
    〔2〕Darnet, M. and Marquis, G., “Modelling streaming
    potential(SP)signals induced by water movement in the
    vadose zone”, Journal of Hydrology, pp.114-24, 2004.
    〔3〕Dobecki, TL. and Romig, PR., “Geotechnical and
    groundwater geophysics”, Geophysics, pp. 2621-36, 1985.
    〔4〕Straface, S., Chidichimo, F., Rizzo, E., Riva, M.,
    Barrash, W. and Revil, A., “Joint inversion of steady-
    state hydrologic and self- potential data for 3D
    hydraulic conductivity distribution at the boise
    Hydrogeophysical Research Site”, Journal of hydrology,
    pp.115-28, 2011.
    〔5〕Sill, WR., “Self-potential modeling from primary
    flows”, Geophysics, pp.76-86, 1983.
    〔6〕Doolittle, JA., Jenkinson, B., Hopkins, D., Ulmer, M.,
    and Tuttle, W., “Hydropedological investigations with
    ground-penetrating Radar (GPR): Estimating water-table
    depths and local ground-water flow pattern in areas of
    coarse-textured soils”, Geoderma. pp.317-29, 2006.
    〔7〕Hewaidy, A., Motaal, E., Sultan, S., Ramdan, T.,
    khafif, A., and Soliman, S., “Groundwater exploration
    using resistivity and magnetic data at the northwestern
    part of the Gulf of Suez”, Egyptian Journal of
    Petroleum, pp.255-63, 2015.
    〔8〕Birch, F., “Imaging the Water Table by Filtering Self‐
    Potential Profiles”, Groundwater. pp.779-82, 1998.
    〔9〕Doussan, C., Jouniaux, L., Thony, J., “Variations of
    self-potential and unsaturated water flow with time in
    sandy loam and clay loam soils”, Journal of Hydrology.
    pp.173-85, 2002.
    〔10〕Juhlin, C., Palm, H., Müllern, C., and Wållberg,
    B., “Imaging of groundwater resources in glacial
    deposits using high-resolution reflection seismics”,
    Journal of Applied Geophysics, pp.107-20, 2002.
    〔11〕黃奕儒,「現地跨孔式抽水試驗推估異質性含水層水文地質
    特性」,國立中央大學,碩士論文,民國98年。
    〔12〕Titov, K., Konosavsky, P., and Narbut, M., “Pumping
    test in a layered aquifer: Numerical analysis of self-
    potential signals”, Journal of Applied Geophysics,
    pp.188-93, 2015.
    〔13〕Carmichael, R., and Henry Jr , G., “Gravity
    exploration for groundwater and bedrock topography in
    glaciated areas”,Geophysics, pp.850-9, 1977.
    〔14〕Revil, A., and Jardani, A., “The self-potential
    method: Theory and applications in environmental
    geosciences”, Cambridge University Press, 2013.
    〔15〕Jouniaux, L., Maineult , A., Naudet, V., Pessel, M.,
    and Sailhac, P., “Review of self-potential methods in
    hydrogeophysics”, Comptes Rendus Geoscience, pp.928-
    36, 2009.
    〔16〕Maineult, A., Strobach, E., and Renner, J., “Self‐
    potential signals induced by periodic pumping tests”,
    Journal of Geophysical Research: Solid Earth, pp.1978
    –2012, 2008.
    〔17〕Marquis, G., Darnet, M., Sailhac, P., Singh, A., and
    Gérard, A., “Surface electric variations induced by
    deep hydraulic stimulation: An example from the Soultz
    HDR site”, Geophysical Research Letters, pp.7-1-7-4,
    2002.
    〔18〕Overbeek, J., “Electrochemistry of the double layer”,
    Colloid science, pp.115-93, 1952.
    〔19〕Revil, A., Hermitte, D., Voltz, M., Moussa, R.,
    Lacas, J., and Bourrié, G., “Self‐potential signals
    associated with variations of the hydraulic head
    during an infiltration experiment”, Geophysical
    Research Letters, pp.10-1-10-4, 2002.
    〔20〕Thony, J., Morat, P., Vachaud ,G., and Le Mouël,
    J., “Field characterization of the relationship
    between electrical potential gradients and soil water
    flux”, Comptes Rendus de l'Académie
    des Sciences-Series IIA-Earth and Planetary Science,
    pp.317-21,1997.
    〔21〕Linde, N., Revil, A., Boleve, A., Dagès, C.,
    Castermant, J., and Suski, B., “Estimation of the
    water table throughout a catchment using self-
    potential and piezometric data in a Bayesian
    framework”, Journal of Hydrology, pp.88-98, 2007.
    〔22〕Jardani, A., Revil, A., Barrash, W., Crespy, A.,
    Rizzo, E., and Straface, S., “Reconstruction of the
    water table from self‐potential data: A Bayesian
    approach”, Groundwater, pp.213-27,2009.
    〔23〕Zohdy, A., Anderson, L., Muffler, L., “Resistivity,
    self-potential,and induced-polarization surveys of a
    vapor-dominated geothermal system”, Geophysics,
    pp.1130-44, 1973.
    〔24〕Zablocki, C., “Streaming potentials resulting from
    the descent of meteoric water: a possible source
    mechanism for Kilauean self-potential anomalies”,
    Trans Geotherm Resour Counc. 2 (1978) pp.747-8.
    〔25〕Guichet, X., Jouniaux, L., and Pozzi, J., “Streaming
    potential of a sand column in partial saturation
    conditions”, Journal of Geophysical Research: Solid
    Earth, pp.2141, 2003.
    〔26〕Perrier, F., and Morat, P., “Characterization of
    electrical daily variations induced by capillary flow
    in the non-saturated zone”,Pure and Applied
    Geophysics, pp.785-810, 2000.
    〔27〕Revil, A., Linde, N., Cerepi, A., Jougnot, D.,
    Matthäi, S., and Finsterle, S., “Electrokinetic
    coupling in unsaturated porous media”, Journal of
    Colloid and Interface Science, pp.315-27,2007.
    〔28〕Allègre, V., Jouniaux, L., Lehmann, F., and Sailhac,
    P.,“Streaming potential dependence on water-content in
    Fontainebleau sand”, Geophysical Journal
    International,pp.1248-66, 2010.
    〔29〕Revil, A., Schwaeger, H., Cathles, L., and Manhardt,
    P.,“Streaming potential in porous media: 2. Theory and
    application to geothermal systems” , Journal of
    Geophysical Research:Solid Earth (1978–2012), pp.20033- 48, 1999.
    〔30〕Petiau, G., “Second generation of lead-lead chloride
    electrodes for geophysical applications” , Pure and
    Applied Geophysics,pp.357-82, 2000.
    〔31〕Allègre, V., Lehmann, F., Ackerer, P., Jouniaux, L.,
    and Sailhac,P., “A 1-D modelling of streaming
    potential dependence on water content during drainage
    experiment in sand”, Geophysical Journal
    International, pp.285-95, 2012.
    〔32〕Yang, H., 「時域反射儀應用於土壤含水量及地下水監測技
    術」,民國93年。
    〔33〕Skierucha, W., Malicki, M., and Walczak, R., “TDR
    method for the measurement of water content and
    salinity of porous media”,Polish Academy of Sciences,
    2004.
    〔34〕鄧宇廷,「跨孔式注氣試驗方法推估異質性非飽和層土壤氣
    體流動參數」,國立中央大學,碩士論文,民國98年。
    〔35〕沈茂松,「實用土壤力學實驗」,文笙書局,台北,民國90
    年。
    〔36〕Simunek, J., Huang, K., and Van Genuchten, M., “The
    HYDRUS-1D Software Package for Simulating the One-
    Dimentional Movement of Water, Heat and Multiple
    Solutes in Variably-Saturated Media”, Hydrology Slovak
    Acad. Sci, 1997.
    〔37〕李奕賢,「HYDRUS-1D模式應用於入滲試驗推估非飽和土
    壤特性參數」,國立中央大學,碩士論文,民國99年。
    〔38〕Van Genuchten, M., “A closed-form equation for
    predicting the hydraulic conductivity of unsaturated
    soils”, Soil science society of America journal,
    pp.892-8, 1980.
    〔39〕林昱辰、單信瑜,「台灣地區掩埋場覆蓋層採用蒸發散覆蓋
    的可行性研究」,國立交通大學,碩士論文,民國100年。
    〔40〕Carsel, R., and Parrish, R., “Developing joint
    probability distributions of soil water retention
    characteristics”, Water Resources Research, pp.755-69,
    1988.
    〔41〕李光敦,「水文學」,五南圖書出版股份有限公司,民國101
    年。
    〔42〕Campbell Scientific, inc.,:取自
    https://www.campbellsci.cc/cr800-datalogger

    QR CODE
    :::