| 研究生: |
林政維 Cheng-Wei Lin |
|---|---|
| 論文名稱: |
以CoO及SnO2/ MoS2複合物修飾管狀有序中孔洞碳材CMK-9於高能鋰離子電池負極材料之應用 CoO nanoparticles and SnO2/ MoS2 composite confined in tube-like mesoporous carbon as efficient nanocomposite anodes for lithium-ion batteries |
| 指導教授: | 高憲明 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 鋰離子電池 、中孔洞碳材 、氧化鈷 、二氧化錫 、二硫化鉬 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討將高理論電容的過渡金屬氧化物 (Transition-metal oxides)及過渡金屬硫化物 (Transition-metal dichalcogenides )修飾於有序中孔洞管狀碳材CMK-9上,應用於鋰離子電池負極的複合材料。利用高分子界面活性劑P123作為模板,和矽源TEOS(Tetraethyl orthosilicate)在酸性下進行合成,得到對稱性為Ia3 ̅d構型為cubic的中孔洞矽材KIT-6,利用糠醇做為碳源將矽材碳化後,可得到有序中孔洞管狀碳材CMK-9。
第一部份為CoO@CMK-9的合成,CoO具有高的理論電容(716 mAh g−1),價格便宜等優點,但有體積膨脹率大的問題,利用中孔洞碳材CMK-9能限制住充放電時的體積變化,使電容量有所提升,以100 mA/g電流密度進行測試,測試200圈後,電容量仍高達828 mAh/g。
第二部分為利用水熱法一步合成SnO2/MoS2@CMK-9,MoS2為層狀結構,加入SnO2能有效分隔MoS2避免堆疊,CMK-9有增加導電度及限制SnO2體積膨脹的功能,以100mA/g的電流密度,循環測試50圈以後,電容量達782mAh/g。
Transition metal oxides and Transition-metal dichalcogenides as anode materials in lithium ion batteries have attracted tremendous attention because of their high theoretical capacities compared with commercial graphite. However, the large volume expansion during the charge-discharge process leads to low electrical conductivities.
In first part, we design a tubular nanocomposite of CoO@CMK-9 to overcome this problem. A three-dimensional (3-D) hollow-type ordered mesoporous carbon (CMK-9) could not only provide enough space during the Li+ insertion-extraction process, but also increase the electrical conductivity. CoO is regarded as one of the most promising anode material for lithium ion batteries (LIBs), due to its high theoretical capacity (715 mAh/g), natural abundance, and low cost. CoO@CMK-9 delivers a reversible capacity of 828 mAh/g after 200 cycles at a current density of 100 mAh/g with an outstanding rate performance. The CoO@CMK-9 nanocomposite is expected to have high specific capacity and good cycling performance.
In second part, we design a novel structured SnO2/MoS2@CMK-9, MoS2 is a graphene-like layered structure, Mo is sandwiched between two S layers. The atoms in the layers are bound strongly by covalent bonds, while the adjacent layers interact by weak van der Waals forces. MoS2 nanosheets can be easily restacked together during charge–discharge processes. To solve this problem, we add SnO2 nanoparticles which can avoid to restack of MoS2 nanosheets. SnO2/MoS2@CMK-9 demonstrate an excellent Li-storage performance as an anode of LIBs, deliver a high reversible charge capacity of 782 mAh/g after 50 cycles at a current density of 100 mAh/g.
1. http://www.ledwatcher.com/.
2. http://batteryuniversity.com.
3. Gopalakrishnan, R.; Goutam, S.; Oliveira, L. M.; Timmermans, J.-M.; Omar, N.; Messagie, M.; Van den Bossche, P.; van Mierlo, J., A comprehensive study on rechargeable energy storage technologies. Journal of Electrochemical Energy Conversion and Storage 2016, 13 (4), 040801.
4. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
5. Wang, W.; Yuan, D., Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Scientific reports 2014, 4, 5711.
6. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
7. Wan, L.; Jiao, J.; Cui, Y.; Guo, J.; Han, N.; Di, D.; Chang, D.; Wang, P.; Jiang, T.; Wang, S., Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanotechnology 2016, 27 (13), 135102.
8. Lamond, T. G.; Marsh, H., The surface properties of carbon—III the process of activation of carbons. Carbon 1964, 1 (3), 293-307.
9. Hu, Z.; Srinivasan, M. P.; Ni, Y., Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials 2000, 12 (1), 62-65.
10. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
11. Pekala, R. W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science 1989, 24 (9), 3221-3227.
12. Marsh, H.; Rand, B., The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities. Carbon 1971, 9 (1), 63-77.
13. Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H., Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules. Chemistry of Materials 1996, 8 (2), 454-462.
14. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33 (8), 1085-1090.
15. Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35 (7), 1031-1033.
16. Liang, C.; Hong, K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition 2004, 43 (43), 5785-5789.
17. Liang, C.; Dai, S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
18. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
19. Prospects for Carbon as Packing Material in High-Performance Liquid Chromatography. Journal of Liquid Chromatography 1983, 6 (sup001), 1-36.
20. Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F., Hard-Templating Pathway To Create Mesoporous Magnesium Oxide. Chemistry of Materials 2004, 16 (26), 5676-5681.
21. Bonelli, B.; Esposito, S.; Freyria, F. S., Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania. In Titanium Dioxide, InTech: 2017.
22. Tascón, J. M., Novel carbon adsorbents. Elsevier: 2012.
23. Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710.
24. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
25. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered mesoporous carbons. 2001.
26. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
27. Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.; Ryoo, R., Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy. The Journal of Physical Chemistry B 2002, 106 (47), 12198-12202.
28. Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia 3 d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
29. Zhang, F.; Meng, Y.; Gu, D.; Yan, Y.; Chen, Z.; Tu, B.; Zhao, D., An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chemistry of materials 2006, 18 (22), 5279-5288.
30. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M., Lithium storage in ordered mesoporous carbon (CMK‐3) with high reversible specific energy capacity and good cycling performance. Advanced Materials 2003, 15 (24), 2107-2111.
31. Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W., One dimensional and coaxial polyaniline@ tin dioxide@ multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chemical Engineering Journal 2018, 334, 162-171.
32. Shen, T.; Xia, X.-h.; Xie, D.; Yao, Z.-j.; Zhong, Y.; Zhan, J.-y.; Wang, D.-h.; Wu, J.-b.; Wang, X.-l.; Tu, J.-p., Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries. Journal of Materials Chemistry A 2017, 5 (22), 11197-11203.
33. Qiu, H.; Wang, Y.; Liu, Y.; Li, D.; Zhu, X.; Ji, Q.; Quan, F.; Xia, Y., Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. Journal of Porous Materials 2017, 24 (2), 551-557.
34. Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L., Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. Journal of Power Sources 2017, 362, 20-26.
35. Mochida, I.; Yoon, S.-H.; Qiao, W., Catalysts in syntheses of carbon and carbon precursors. Journal of the Brazilian Chemical Society 2006, 17 (6), 1059-1073.
36. Patra, J.; Rath, P. C.; Yang, C.-H.; Saikia, D.; Kao, H.-M.; Chang, J.-K., Three-dimensional interpenetrating mesoporous carbon confining SnO2 particles for superior sodiation/desodiation properties. Nanoscale 2017, 9 (25), 8674-8683.
37. Saikia, D.; Wang, T.-H.; Chou, C.-J.; Fang, J.; Tsai, L.-D.; Kao, H.-M., A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. Rsc Advances 2015, 5 (53), 42922-42930.
38. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
39. Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J.-m., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature communications 2015, 6, 7393.
40. Ren, M.; Yang, M.; Liu, W.; Li, M.; Su, L.; Qiao, C.; Wu, X.; Ma, H., Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries. Electrochimica Acta 2016, 194, 219-227.
41. Li, Z.; Liu, N.; Wang, X.; Wang, C.; Qi, Y.; Yin, L., Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry 2012, 22 (32), 16640-16648.
42. Han, F.; Li, W.-C.; Li, M.-R.; Lu, A.-H., Fabrication of superior-performance SnO2@ C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. Journal of Materials Chemistry 2012, 22 (19), 9645-9651.
43. Zhang, H.; Tao, H.; Jiang, Y.; Jiao, Z.; Wu, M.; Zhao, B., Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. Journal of Power Sources 2010, 195 (9), 2950-2955.
44. Huang, X. l.; Wang, R. z.; Xu, D.; Wang, Z. l.; Wang, H. g.; Xu, J. j.; Wu, Z.; Liu, Q. c.; Zhang, Y.; Zhang, X. b., Homogeneous CoO on Graphene for Binder‐Free and Ultralong‐Life Lithium Ion Batteries. Advanced Functional Materials 2013, 23 (35), 4345-4353.
45. Yuan, W.; Zhang, J.; Xie, D.; Dong, Z.; Su, Q.; Du, G., Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochimica Acta 2013, 108, 506-511.
46. Liu, L.; Mou, L.; Yu, J.; Chen, S., Urchin-like CoO–C micro/nano hierarchical structures as high performance anode materials for Li-ion batteries. RSC Advances 2017, 7 (5), 2637-2643.
47. Li, Y.; Guan, Q.; Cheng, J.; Ni, W.; Wang, B., Carbon-coated hollow CoO microporous nanospheres synthesized by CoF2 as the intermediates as anode materials for lithium-ion batteries. Ionics 2018, 1-8.
48. Zhao, C.; Shen, Y.; Hu, Z.; Wang, X., Synthesis of Porous CoO Nanorods@ N-doped Carbon as High-Performance Lithium Ion Battery Anode. Int. J. Electrochem. Sci 2018, 13, 5184-5194.
49. Zeng, H.; Cui, X., An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chemical Society Reviews 2015, 44 (9), 2629-2642.
50. Zhang, C.; Wu, H. B.; Guo, Z.; Lou, X. W. D., Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochemistry Communications 2012, 20, 7-10.
51. Teng, Y.; Zhao, H.; Zhang, Z.; Li, Z.; Xia, Q.; Zhang, Y.; Zhao, L.; Du, X.; Du, Z.; Lv, P., MoS2 Nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS nano 2016, 10 (9), 8526-8535.
52. Pan, Q.; Zheng, F.; Ou, X.; Yang, C.; Xiong, X.; Liu, M., MoS2 encapsulated SnO2-SnS/C nanosheets as a high performance anode material for lithium ion batteries. Chemical Engineering Journal 2017, 316, 393-400.
53. Zheng, F.; Pan, Q.; Yang, C.; Xiong, X.; Ou, X.; Hu, R.; Chen, Y.; Liu, M., Sn‐MoS2‐C@ C Microspheres as a Sodium‐Ion Battery Anode Material with High Capacity and Long Cycle Life. Chemistry-A European Journal 2017, 23 (21), 5051-5058.
54. Zhang, X.; Xiang, J.; Mu, C.; Wen, F.; Yuan, S.; Zhao, J.; Xu, D.; Su, C.; Liu, Z., SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes. Electrochimica Acta 2017, 227, 203-209.
55. https://www.nsrrc.org.tw/.
56. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems. In Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA: 2008.
57. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E., On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society 1940, 62 (7), 1723-1732.
58. 王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 渤海堂文化公司, 台北, (1993).
59. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73 (1), 373-380.
60. S. J.Gregg; K. S. W. Sing, “Adsorption, Surface Area and Porosity”, 2nd Ed. Academic press, New York, NY, 1982.
61. Kim, H.-D.; Kim, T.-W.; Park, H. J.; Jeong, K.-E.; Chae, H.-J.; Jeong, S.-Y.; Lee, C.-H.; Kim, C.-U., Hydrogen production via the aqueous phase reforming of ethylene glycol over platinum-supported ordered mesoporous carbon catalysts: Effect of structure and framework-configuration. international journal of hydrogen energy 2012, 37 (17), 12187-12197.
62. Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V., Cobalt oxide nanoparticles: characterization and its electrocatalytic activity towards nitrobenzene. Chem. Sci. Trans. 2013, 2 (S1), S47.
63. Fang, B.; Kim, M.-S.; Kim, J. H.; Lim, S.; Yu, J.-S., Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. Journal of Materials Chemistry 2010, 20 (45), 10253-10259.
64. Madian, M.; Ummethala, R.; Naga, A. O. A. E.; Ismail, N.; Rümmeli, M. H.; Eychmüller, A.; Giebeler, L., Ternary CNTs@ TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries. Materials 2017, 10 (6), 678.
65. Zhang, L.; Hu, P.; Zhao, X.; Tian, R.; Zou, R.; Xia, D., Controllable synthesis of core–shell Co@ CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. Journal of Materials Chemistry 2011, 21 (45), 18279-18283.
66. Wang, G.; Meng, Y.; Wang, L.; Xia, J.; Zhu, F.; Zhang, Y., Yolk-shell Co3O4–CoO/carbon composites for lithium-ion batteries with enhanced electrochemical properties. Int J Electrochem Sci 2017, 12, 2618-2627.
67. Zhang, M.; Uchaker, E.; Hu, S.; Zhang, Q.; Wang, T.; Cao, G.; Li, J., CoO–carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale 2013, 5 (24), 12342-12349.
68. Zhang, M.; Jia, M.; Jin, Y.; Shi, X., Synthesis and electrochemical performance of CoO/graphene nanocomposite as anode for lithium ion batteries. Applied Surface Science 2012, 263, 573-578.
69. Li, X.; Zhu, J.; Fang, Y.; Lv, W.; Wang, F.; Liu, Y.; Liu, H., Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemical performance. Journal of Electroanalytical Chemistry 2018, 817, 1-8.
70. Zhu, X.; Yang, C.; Xiao, F.; Wang, J.; Su, X., Synthesis of nano-TiO2-decorated MoS2 nanosheets for lithium ion batteries. New Journal of Chemistry 2015, 39 (1), 683-688.
71. Chen, B.; Zhao, N.; Guo, L.; He, F.; Shi, C.; He, C.; Li, J.; Liu, E., Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core–shell nanostructures for stable and high-performance lithium-ion batteries. Nanoscale 2015, 7 (30), 12895-12905.
72. Li, N.; Liu, Z.; Gao, Q.; Li, X.; Wang, R.; Yan, X.; Li, Y., In situ synthesis of concentric C@ MoS2 core–shell nanospheres as anode for lithium ion battery. Journal of Materials Science 2017, 52 (22), 13183-13191.
73. Chen, B.; Meng, Y.; He, F.; Liu, E.; Shi, C.; He, C.; Ma, L.; Li, Q.; Li, J.; Zhao, N., Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. Nano Energy 2017, 41, 154-163.
74. Ding, S.; Chen, J. S.; Lou, X. W. D., Glucose‐Assisted Growth of MoS2 Nanosheets on CNT Backbone for Improved Lithium Storage Properties. Chemistry-A European Journal 2011, 17 (47), 13142-13145.
75. Zhang, H.; Li, L.; Li, Z.; Zhong, W.; Liao, H.; Li, Z., Controllable synthesis of SnO2@ carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries. Applied Surface Science 2018, 442, 65-70.
76. Dirican, M.; Yanilmaz, M.; Fu, K.; Lu, Y.; Kizil, H.; Zhang, X., Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. Journal of Power Sources 2014, 264, 240-247.