跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁榮恩
Rong-En Weng
論文名稱: 力學蜂窩晶格之拓樸邊緣態探討
Study on the topological edge states of mechanical honeycomb lattice
指導教授: 欒丕綱
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 57
中文關鍵詞: 拓樸邊緣態
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先探討力學蜂窩晶格於幾類邊界條件下的邊緣態,對其存在緣由作出解釋。隨後引入科氏力破壞時間反演對稱以產生手徵邊緣態,並檢視與此相關的拓樸相變。再者考察晶格錯位時邊緣態與缺陷態的耦合情形,藉以比較各類邊緣態對晶格錯位之容忍度。最後引入次近鄰連結,探討因歪折邊界連結角度而產生的邊緣態。


    In this thesis we first discuss the edge states of the mechanical honeycomb lattice under several types of boundary conditions, and explain the underlying mechanisms of their existence. Subsequently, Coriolis force is introduced to break the time reversal symmetry and generate chiral edge states. The corresponding topological phase transition is also examined. Furthermore, the coupling of edge states and defect states under lattice dislocation is investigated, so as to compare the tolerance of various edge states to lattice dislocation. Finally, the next-nearest-neighbor connection is considered, so as to discuss the edge states caused by distorting the angle of the boundary connections.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 V 第一章 緒論 1 第二章 理論與算法 6 2-1 陳數與威爾森迴圈算法 6 2-2 時間反演算子與平移不變系統 10 2-3 邊緣態與體系—邊界對應 11 第三章 力學蜂窩晶格模型 15 3-1 運動方程 15 3-2 單向有界能帶結構 18 3-3 無界能帶結構 20 3-4 陳數計算程序 21 第四章 數值結果與討論 23 4-1 蜂窩晶格體帶與邊緣態 23 4-1-1 Ω=0 時的邊緣態探討 24 4-1-2 Ω≠0 時的邊緣態探討 30 4-1-3 晶格錯位對邊緣態之影響 36 4-2 次近鄰連結蜂窩晶格 40 4-2-2 Ω=0 時的邊緣態探討 40 4-2-2 Ω≠0 時的邊緣態探討 42 第五章 結論與未來展望 44 5-1 結論 44 5-2 未來展望 44 參考文獻 46

    參考文獻

    1. Klitzing, K.v., G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 1980. 45(6): p. 494-497.
    2. Thouless, D.J., et al., Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Physical Review Letters, 1982. 49(6): p. 405-408.
    3. Haldane, F.D.M., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly". Physical review letters, 1988. 61(18): p. 2015.
    4. Kane, C.L. and E.J. Mele, Quantum Spin Hall Effect in Graphene. Physical Review Letters, 2005. 95(22): p. 226801.
    5. Kane, C.L. and E.J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect. Physical Review Letters, 2005. 95(14): p. 146802.
    6. Fruchart, M. and D. Carpentier, An introduction to topological insulators. Comptes Rendus Physique, 2013. 14(9): p. 779-815.
    7. Lee, C.H., et al., Topolectrical Circuits. Communications Physics, 2018. 1(1): p. 39.
    8. Yang, Z., et al., Topological Acoustics. Physical Review Letters, 2015. 114(11): p. 114301.
    9. He, C., et al., Acoustic topological insulator and robust one-way sound transport. Nature Physics, 2016. 12(12): p. 1124-1129.
    10. Cserti, J. and G. Tichy, A simple model for the vibrational modes in honeycomb lattices. European journal of physics, 2004. 25(6): p. 723.
    11. Wang, Y.-T., P.-G. Luan, and S. Zhang, Coriolis force induced topological order for classical mechanical vibrations. New Journal of Physics, 2015. 17(7): p. 073031.
    12. Kariyado, T. and Y. Hatsugai, Manipulation of dirac cones in mechanical graphene. Scientific reports, 2015. 5(1): p. 1-8.
    13. Liu, Y., et al., Model for topological phononics and phonon diode. Physical Review B, 2017. 96(6): p. 064106.
    14. Zhou, Y., P.R. Bandaru, and D.F. Sievenpiper, Quantum-spin-Hall topological insulator in a spring-mass system. New Journal of Physics, 2018. 20: p. 14.
    15. Chen, H., H. Nassar, and G.L. Huang, A study of topological effects in 1D and 2D mechanical lattices. Journal of the Mechanics and Physics of Solids, 2018. 117: p. 22-36.
    16. Ronellenfitsch, H., et al., Inverse design of discrete mechanical metamaterials. Physical Review Materials, 2019. 3(9): p. 095201.
    17. Ronellenfitsch, H. and J. Dunkel, Chiral Topological Phases in Designed Mechanical Networks. Frontiers in Physics, 2019. 7(178).
    18. Xiao, M., et al., Geometric phase and band inversion in periodic acoustic systems. Nature Physics, 2015. 11(3): p. 240-244.
    19. Wu, L.-H. and X. Hu, Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material. Physical Review Letters, 2015. 114(22): p. 223901.
    20. Berry, M.V., Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1984. 392(1802): p. 45-57.
    21. R.Shankar. Topological Insulators -- A review. 2018. arXiv:1804.06471.
    22. Yu, R., et al., Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Physical Review B, 2011. 84(7): p. 075119.
    23. Weng, H., et al., Quantum anomalous Hall effect and related topological electronic states. Advances in Physics, 2015. 64(3): p. 227-282.
    24. Sakurai, J.J. and E.D. Commins, Modern quantum mechanics, revised edition. 1995, American Association of Physics Teachers.
    25. Asbóth, J.K., L. Oroszlány, and A. Pályi, A short course on topological insulators band structure and edge states in one and two dimensions. 2016, Cham; Heidelberg; New York; Dordrecht; London: Springer.
    26. Shen, S.-Q., Topological insulators : Dirac equation in condensed matter. 2017.
    27. Landau, L.D. and E.M. Lifshitz, Mechanics: Volume 1. Vol. 1. 1976: Butterworth-Heinemann.
    28. 欒丕綱、陳啟昌, 光子晶體:從蝴蝶翅膀到奈米光子學 (第二版). 2010: 五南出版社.
    29. Kohmoto, M. and Y. Hasegawa, Zero modes and edge states of the honeycomb lattice. Physical Review B, 2007. 76(20): p. 205402.
    30. Bernevig, B.A. and T.L. Hughes, Topological Insulators and Topological Superconductors. STU - Student edition ed. 2013: Princeton University Press.

    QR CODE
    :::