跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊祥霖
HSIANG-LIN YANG
論文名稱: 火炎山土石流之現地監測與影像及地聲分析
指導教授: 周憲德
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 土石流流動形態地聲次聲快速傅利葉希爾伯特-黃轉換
外文關鍵詞: behavior of debris, geophones, infrasound, Fast Fourier fransform, Hilbert-Huang transform
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 山區溪溝發生土石流時常造成嚴重之坡地災害,其土石流具速度快、埋深大和粗顆粒多之特性而產生強大破壞力。由探討土石流的流動形態,內部粒徑及流速可分析其對結構物的撞擊力與有效的防治工法配置,並進行危險區域的分級,以降低災害損失程度。本研究以地聲及次聲監測系統配合現場架設之影像系統,將土石流形態分類並與地聲訊號相互比較驗證,經由不同流動形態之土石流流量與地聲訊號比對以分析其相關性。本文主要研究2013/5/22滯留鋒面降雨引起之火炎山土石流事件。
    由監測資料顯示次聲之因素主要為風、雨聲,其特徵頻率為5Hz以下。地表逕流與土石流訊號分析得知地聲訊號反應較次聲良好,地表逕流頻譜的主頻分佈會比土石流頻譜高,本次事件地表逕流頻譜特性介於30 ~ 45Hz;土石流頻譜特性則在10 ~ 32Hz間。且藉由影像系統驗證雙聲系統,得知藉由地聲所測得之反應,分析頻譜以及判定訊號反應之延時,以作為土石流預警系統之根據。


    Debris flows from mountainous gulley often cause serious slope disasters, due to the destructive high velocities, larger buried depth and great number of coarse particles. By analyzing the debris flow pattern, its internal particle size and flow speed, we can analyze its impact force on buildings and set up effective prevention and control methods and classify the risk zone to reduce loss. The research employs geophones and acoustic sensors with the CCD-image system built on site to classify the behavior of debris and compare them with geophone signals. At last, it compares and analyzes the correlation between various debris flows and geophone signals.
    This paper studies the rainfall-induced debris-flow event at the Houyenshan on May 22, 2013. The current infrasound signals are mainly influenced by winds and rain noises, whose characteristic frequencies are less than 5Hz. Through analyzing signals of surface runoff and debris flows, it can find out that geophone signals are better than infrasound signals for debris-flow monitoring system . Frequency distribution of surface runoff is higher than that of debris-flow the frequency spectrum of surface runoffs are 30 to 45Hz; and the frequency spectrum of debris flows are 10 to 32Hz. Through testing both geophone and acoustic systems by CCD-image system, it can be concluded that the signals of geophone sensors, by frequency spectrum analysis and judging signal duration and their amplitudes can be regarded as the basis of debris-flow warning system.

    目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 研究內容及方法 2 1.4 論文架構 3 第二章 文獻回顧 5 2.1土石流流動相關之研究 5 2.2 聲波相關之研究 7 第三章 現地監測設備及研究分析說明 12 3.1 現地設備與監測位置 12 3.2 頻率分析介紹 17 3.3 包絡線分析方法介紹 22 第四章 現地環境監測實驗 25 4.1 現地環境監測-降雨分析 25 4-2 現地環境次聲監測實驗 30 第五章 現地監測土石流結果分析 39 5.1 土石流流動厚度 40 5.2 土石流流動形態與現地監測地聲分析 41 5.3 兩種類型土石流形態分析 85 5.4 水石流地聲與流動厚度分析 89 5.5 土石流地聲與地表逕流地聲分析 90 第六章 結論與建議 94 6.1 結論 94 6.2 建議 95 參考文獻 96

    [1] 丁蒼毅(2007),「使用低壓量測方法之連續血壓量測系統」,國立中央 大學電機工程學系碩士論文。
    [2] 尹孝元(2009),「台灣土石流觀測系統現況與展望」,農田水利自動測報暨地理資訊系統技術應用研討會。
    [3] 朱展毅、陳懋毅等人(2010),「CORDIC 64-point FFT」,南台科技大學課堂報告。
    [4] 周憲德、李璟芳、黃郅軒、張友龍(2013),「火炎山礫石型土石流之監測與流動特性分析」,中華水土保持學報44(2),pp. 135 ~ 159。
    [5] 周憲德、廖偉民(1998),「孔隙水壓對溪床土石流發生機制之影響」,中華水土保持學報29(3),pp. 211~217。
    [6] 張友龍(2012),「應用次聲與地聲之土石流現場觀測與雨量臨界分析」,國立中央大學土木工程學系博士論文。
    [7] 許家銘(2013),「三義火炎山土石流現地監測資料之分析與判識」,國立中央大學土木工程學系碩士論文。
    [8] 游繁結、吳仁明、翁緯明(2006),「礫石層邊坡形成土石流之微地形探討」,中華水土保持學報37(4),pp. 329~340。
    [9] 黃郅軒(2011),「儲槽內顆粒流動與發聲特性之研究」,國立中央大學土木工程學系碩士論文。
    [10] 黃清哲、朱崇銳、田宗謨、尹孝元(2013),「土石流光纖感測系統之整合與應用」,中華水土保持學報44(3),pp.191~201 。
    [11] 詹錢登(2004),「豪雨造成的土石流」,科學發展374期,pp. 14~23。
    [12] 劉格非(2005),「地聲探測器應用於土石流偵測」,土沙災害調查與防治技術整合應用研討會,pp.97~108。
    [13] Andreotti, B.,(2004)「The song of dunes as a wave-particle mode locking」,Physical Review Letter.Vol.93,pp. L238001.
    [14] Arattano, M. and Marchi, L.,(2005)「Measurements of debris flow velocity through cross-correlation of instrumentation datae」,Can. Geotech. J. 42,pp.919~931.
    [15] Bagnold, R. A.,(1954)「Physics of Blown Sand and Desert Dunes」,London:Methuen ,pp. 247~267.
    [16] Bagnold, R. A.,(1996)「The Shearing and Dilatation of Dry Sand and the Singing Mechanism」, Proc. Roy. Soc., 295A, 219.
    [17] Douady, S., Manning, A., Hersen, P., Elbelrhiti, H., Protière, S., Daerr, A., Kabbachi, B.,(2006)「Song of the Dunes as a Self-Synchronized instrument」,Physical Review Letters , Vol. 97,pp. L018002.
    [18] Hunt, M.L. and Vriend ,N.M.,(2005)「Booming Sand Dunes」,Natural Hazards and Earth System Sciences,pp. 137~142.
    [19] Hunt, M.L., Vriend ,N.M., Clayton ,R.W., Brennen, C.E., Brantley, K.S. and Ruiz-Angulo A.,(2007)「Solving the mystery of booming sand dunes」,Geophysical Research Letters Vol. 34, L16306.
    [20] Imaizumi, F., Tsuchiya, S.and Ohsaka, O.,(2005)「Behaviour of debris flows located in a mountainous torrent on the Ohya landslide」,Can. Geotech. J. 42,pp.919~931.
    [21] Imaizumi, F., Sidle, R.C., Tsuchiya, S.and Ohsaka, O.,(2006)「Hydrogeomorphic processes in a steep debris flow initiation zone」,Geophysical Research Letters, Vol. 33, L10404.
    [22] Lo, C.M., Lee, C.F,Chou, H.T. & Lin, M.L.,(2013)「Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan」,Springer-Verlag Berlin Heidelberg.
    [23] Patitsas, A.J.,( 2003)「Booming and singing acoustic emissions from fluidized granular beds」,Journal of Fluids and Structures .17,pp.287~315.
    [24] Patitsas, A.J.,(2008)「Singing sands, musical grains and booming sand dunes」,Journal of Physical and Natural Sciences.
    [25] Sholtz, P., Bretz, M. and Nori, F.,(1997) 「Sound-producing sand avalanches」,Contemporary Physics, volume 38(5),pp 329~342.
    [26] Vriend, N.M.,(2010)「Booming Sand Dunes」,In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy.
    [27] Wang, Z.T.,(2013)「Mechanism of acoustic emissions from booming sand dunes」,NSFC project No.11274002.
    [28] Yinl, H.Y., Huang, C.J., Fang, Y.M., Lee, B.J.,Chou, T.Y.,(2011)「The Present Development Of Debris Flow Monitoring Technology In Taiwan」,Casa Editrice Università La Sapienza,pp.623~631.

    QR CODE
    :::