| 研究生: |
鄒益豪 Yi-Hao Tsou |
|---|---|
| 論文名稱: |
台灣地區對流胞特性統計分析與即時路徑預報之改善 |
| 指導教授: |
鍾高陞
Kao-Shen Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 對流胞分析 、對流胞追蹤 、即時預報 |
| 外文關鍵詞: | Storm Cell Analysis, Radar-based Cell Tracking, Nowcasting |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
劇烈天氣降水為台灣春夏交際時常見的天氣事件,並且容易對經濟造成損失,甚至對於大眾的生活以及安全造成危害;因此當劇烈天氣發生時該如何有效應對以及警戒是一項重要的議題。本研究使用中央氣象局用於預報作業上之對流監測平台系統(System for Convection Analysis and Nowcasting, SCAN)當中以對流胞辨識與追蹤(Storm Cell Identification and Tracking, SCIT)方式所得出的對流胞資料,進行2015年~2018年總共4年來5月到8月之統計分析。由於台灣主要為東北──西南走向之地形,天氣系統在北部以及南部皆有不同的表現,因此北部採用五分山雷達之觀測資料,南部則以七股雷達資料將台灣地區分為北部以及南部進行分析探討。藉由統計上所得到的資訊定量決定對流胞預報過程中之預警範圍。進一步利用2019年5~8月資料進行驗證。
在對流胞特性分析上,北部地區之對流胞多為自陸地往海洋或在洋面上移動,南部地區主要是自海面往陸地上移動;由於挑選月分為春夏交際之時,因此大多數對流胞還是以西南向東北進行移動。生命週期方面絕大多數對流胞落在1小時內,其次為1~2小時;在位置分布上,北部區域分佈於海面上之對流胞數量相較於南部地區海域對流胞數量來得多,而分布密度上不論南北區域依然是陸地區域之對流胞密度高於海面區域。
而對流胞預警方面,本研究採用類似於颱風路徑潛勢預報(PTA)的方式將對流胞統計過去誤差後取前70%之最大誤差,並將對流胞依照4種速度進行區分,不同速度對應至不同誤差範圍,挑取個案進行預報測試;結果顯示整體命中率約為60~70%。由於SCIT演算法本身的限制,對流胞初筆資料並不會有移動方向以及速度以進行外延預報,因此後續加入了其他系統所提供之中尺度環流場進行測試,初步測試結果為使用MAPLE運動場在大多數個案可以達到近似於原本SCIT資料直線外延之效果,甚至在部分個案表現出之效果比原先結果來得更好,因此推測可以補足SCIT上不足之處,以增加劇烈天氣警戒能力。
Severe weather system accompanies with heavy rainfall is a common event which often occurs in summer time over Taiwan area. It affects people security, life safety, and the economy. Therefore, how to predict such kind of events and prevent the disasters is an major issue for the operational unit. In this study, the Storm Cell Identification and Tracking (SCIT) algorithm in the System for Convection Analysis and Nowcasting (SCAN), which is applied in the forecast center of Central Weather Bureau (CWB), is used to survey the occurrence of convective cells, identify their locations and track the movements for the nowcasting. To examine the convective cells statistically, a set of historical data between March and August from 2015 to 2018 are selected for this study. In addition, the RCWF (Wu-Fan San) radar data is collected to represent northern Taiwan area, and the RCCG (Chi-Gu) radar data is selected to represent southern Taiwan area.
Results of the analysis show that, most of convective cells have about 1-hour life time. In addition, the distribution of cells shows more convection events over the ocean area in northern Taiwan compared with southern Taiwan, but the cell density over land area is higher than ocean area in both location.
To improve the nowcasting quantitatively, the tracking error of the convective cells are estimated in statistics. Based on the moving speed of the cells, the Potential Track Area algorithm is applied in 4 categories to define the affected radius of convective cells in the period of 0-1h nowcasting. By examining the performance of storm tracking in 2019, result shows that the hit rate is about 60~70%. When further providing additional information of environment flow, the performance of nowcasting can be further improved in some cases.
潘俊瑋,鍾高陞,林欣弘,陳台琦,姚奕安,2018:“雷達回波變分追蹤法應用於臺灣複雜地形環境下之可行性評估”,大氣科學,46卷,1-34。
張保亮,林品芳,丘台光,陳嘉榮,2008:“台灣地區午後對流氣候特徵”,中央氣象局天氣分析與預報研討會論文彙編(97年),171-176。
蔡甫甸,2011:“中央氣象局即時預報發展之探討─使用SCAN追蹤分析2011年新店龍捲風所伴隨之風暴個案”,中央氣象局建國百年天氣分析預報與地震測報研討會論文彙編(100年),219-224。
蔡孝忠,呂國臣,許乃寧,賈愛玫,2011:“蒙地卡羅法在颱風侵襲機率估計的應用”, 大氣科學,39卷,269-288。
木川誠一郎,2014:“高解像度降水ナウキャストにおける降水の解析.予測技術について”,測候時報,第81巻,55-76。
宮城仁史,入口武史,佐藤大輔,熊谷小緒里,白石瞬,2013:“解析雨量.降水短時間予報.降水ナウキャストの改善”,平成24年度予報技術研修テキスト,気象庁予報部,108-121。
Bechini, R. and V. Chandrasekar, 2017: An enhanced optical flow technique for radar nowcasting of precipitation and winds. Journal of Atmospheric and Oceanic Technology, 34(12), 2637-2658.
Bowler, N. E., C. E. Pierce, and A. W. Seed, 2006: STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quarterly Journal of the Royal Meteorological Society, 132(620), 2127-2155.
Brovelli, P., S. Sénési, E. Arbogast, P. Cau, S. Cazabat, M. Bouzom, and J. Reynaud, 2005: Nowcasting thunderstorms with Sigoons a significant weather object oriented nowcasting system. Proceedings of the international symposium on nowcasting and very short range forecasting (WSN05), Toulouse, France.
Chen, T. C., J. D. Tsay, and E. S. Takle, 2016: A Forecast Advisory for Afternoon Thunderstorm Occurrence in the Taipei Basin during Summer Developed from Diagnostic Analysis. Weather and Forecasting, 31(2), 531-552.
Chung, K. S., and I. A. Yao, 2020: Improving radar echo Lagrangian extrapolation nowcasting by blending numerical model wind information: Statistical performance of 16 typhoon cases. Monthly Weather Review, 148(3), 1099-1120.
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. Journal of atmospheric and oceanic technology, 10(6), 785-797.
Eilts, M. D., J. T. Johnson, E. D. Mitchell, S. Sanger, G. J. Stumpf, A. Witt, K. W. Thomas, K. Hondl, D. Rhue and M. H. Jain, 1996: Severe weather warning decision support system. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 536-540.
Foresti, L., I. V. Sideris, L. Panziera, D. Nerini, and U. Germann, 2018: A 10‐year radar‐based analysis of orographic precipitation growth and decay patterns over the Swiss Alpine region. Quarterly Journal of the Royal Meteorological Society, 144(716), 2277-2301.
Golding, B. W., 1998: Nimrod: A system for generating automated very short range forecasts. Meteorological Applications, 5(1), 1-16.
Joe, P., and P. T. May, 2003: Correction of dual PRF velocity errors for operational Doppler weather radars. Journal of Atmospheric and Oceanic Technology, 20(4), 429-442.
Johnson, J. T., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Weather and forecasting, 13(2), 263-276.
Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The warning decision support system–integrated information. Weather and Forecasting, 22(3), 596-612.
Laroche, S. and I. Zawadzki, 1994: A Variational Analysis Method for Retrieval of 3-Dimensional Wind-Field from Singel Doppler Radar Data. Journal of the Atmospheric Sciences, 51(18), 2664-2682
Laroche, S. and I. Zawadzki, 1995: Retrievals of Horizontal Winds from Single-Doppleer Clear-Air Data by Methods of Cross-Correlation and Variational Analysis. Journal of Atmospheric and Oceanic Technology, 12(4), 721-738
Lin, P. F., P. L. Chang, B. J. D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Weather and forecasting, 26(1), 44-60.
Morel, C., and S. Senesi, 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quarterly Journal of the Royal Meteorological Society, 128(584), 1953-1971.
Navon, I. M., and D. M. Leger, 1987: Conjugate-Gradient Methods for Large-Scale Minimization in Meteorology. Monthly Weather Review, 115(8), 1479-1502.
Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Weather and Forecasting, 13(2), 304-326.
Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, Mitchell, E. D. Mitchell, and K. W. Thomas , 1998: An enhanced hail detection algorithm for the WSR-88D. Weather and Forecasting, 13(2), 286-303.
Wong, M. C., W. K. Wong, and E. S. Lai, 2006: From SWIRLS to RAPIDS: Nowcast applications development in Hong Kong. PWS Workshop on Warnings of Real-Time Hazards by Using Nowcasting Technology, Sydney, Australia, 9-13.