跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈怡廷
Yi-Ting Shen
論文名稱: 探討電鍍與無電鍍鎳鈀金表面處理於硫氣環境之腐蝕行為與可靠度分析
指導教授: 吳子嘉
Albert T. Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 鎳鈀金表面處理電鍍金屬無電鍍金屬硫氣腐蝕可靠度分析電化學分析
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電子元件應用中腐蝕在可靠度方面為受關注之議題,本研究將比較電鍍鎳鈀金與無電鍍鎳鈀金表面處理之抗腐蝕性,透過單層金屬腐蝕實驗分析各材料之耐蝕性,另藉由複合金屬鍍層之腐蝕結果分析其可靠度與其腐蝕機制,將不同金屬表面處理放置於腐蝕反應腔體中,其腐蝕條件分別為15 ppm、150 ppm以及1500 ppm之二氧化硫氣體,其腐蝕環境溫度為80 °C、濕度為100% RH (relative humidity),腐蝕時間分別為48、120以及240小時,以了解短時間至長時間之腐蝕結果以及腐蝕性氣體濃度對於腐蝕結果的影響,實驗後藉由掃描式電子顯微鏡(Scanning Electronic Microscopy,SEM)觀察試片表面形貌,能量散射光譜儀(Energy Dispersive X-ray Spectrometer,EDS)分析腐蝕物之元素,以及低掠角X光繞射儀(Grazing Incidence X-ray Diffraction,GIXRD)鑑定其化合物種類,化學分析電子能譜儀(Electron Spectroscopy of Chemical Analysis,ESCA)縱深分析觀察原子於材料間之擴散行為,本研究於腐蝕後之橫截面發現無電鍍鎳鈀金經高濃度腐蝕後在鎳層有掏空現象發生,最後透過上述腐蝕實驗之結果,得知電鍍鎳鈀金表面處理之抗腐蝕能力優於無電鍍鎳鈀金表面處理,藉由分析電鍍與無電鍍複合金屬之結構差異建立鎳鈀金複合金屬層之腐蝕機制。


    Corrosion is a serious reliability concern for electronic products. In this study, corrosion resistance of electroplating Ni/Pd/Au is compared with electroless Ni/Pd/Au (ENEPIG) surface finishes, and both of them are plated on Cu pad in automobile printed circuit board (PCB). The corrosion properties of materials were obtained by single coating layer. The samples coated with different surface finishing layers were placed in a chamber of 100% RH (relative humidity) and an ambient of 15 ppm, 150 ppm and 1500 ppm of SO2. After the corrosion test, the morphology of corrosion products formed on the surface were observed by scanning electron microscopy (SEM), and the elements of corrosion products were analyzed by energy dispersive X-ray spectroscopy (EDS). Grazing incident X-ray diffraction (GIXRD) was applied to characterize the crystal structure of the corrosion products. The electron spectroscopy of chemical analysis (ESCA) was used to observe the diffusion of atoms. There were pores in the Ni layer of ENEPIG after corrosion test by observing its cross-section. The results reveal that the electroplating Ni/Pd/Au has better corrosion resistance than the ENEPIG. A mechanism is proposed to discuss the corrosion behaviors for the surface finishes.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 序論 1 1-1 前言 1 1-2 印刷電路板製程 2 1-2-1 印製電路板底片 2 1-2-2 內層線路成型 3 1-2-3 疊板壓合與機械鑽孔 3 1-2-4 外層電路成型 3 1-2-5 防焊層與表面處理 3 1-2-6 線路測試及包裝 4 1-3 腐蝕現象 4 1-3-1 大氣腐蝕 6 1-3-2 濃度影響 7 1-4 表面處理(Surface Finish) 9 1-4-1 熱風焊錫整平(Hot Air Solder Leveling,HASL) 10 1-4-2 有機保焊膜(Organic Soldering Preservative,OSP) 11 1-4-3 化錫(Immersion Tin,ImSn) 12 1-4-4 化銀(Immersion Silver,ImAg) 14 1-4-5 化鎳浸金(Electroless Nickel Immersion Gold,ENIG) 16 1-4-6 化鎳鈀金(Electroless Nickel Electroless Palladium Immersion Gold,ENEPIG) 18 1-5 電鍍與無電鍍製程 19 1-5-1 電鍍原理 20 1-5-2 無電鍍原理 21 1-5-3 電鍍與無電鍍比較 22 1-6 研究動機 25 第二章 實驗方法 26 2-1 試片種類與製備 26 2-1-1 單層金屬鍍層 26 2-1-2 複合金屬鍍層 27 2-2 腐蝕條件 28 2-3 腐蝕面積比計算 29 2-4 試片分析 30 2-4-1 原子力顯微鏡(Atomic Force Microscope,AFM) 30 2-4-2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 30 2-4-3 能量散射光譜儀(Energy Dispersive Spectrometer,EDS) 31 2-4-4 低掠角X射線繞射儀(Grazing Incidence X-ray Diffraction,GIXRD) 32 2-4-5 化學分析電子能譜儀(Electron Spectroscopy of Chemical Analysis,ESCA) 32 2-4-6 恆電位儀(Potentiostat) 32 第三章 結果與討論 34 3-1 單層金屬鍍層腐蝕結果 34 3-1-1 低濃度二氧化硫氣體腐蝕反應 35 3-1-2 高濃度二氧化硫氣體腐蝕反應 39 3-1-3 腐蝕機制探討 44 3-2 複合金屬鍍層腐蝕結果 45 3-2-1 低濃度二氧化硫氣體腐蝕反應 46 3-2-2 高濃度二氧化硫氣體腐蝕反應 48 3-3 雙層金屬鍍層腐蝕結果 53 3-4 複合金屬層腐蝕機制 57 3-4-1 電鍍鎳與無電鍍鎳之結構 57 3-4-2 腐蝕物生成機制 59 3-4-3 塔弗曲線(Tafel curve) 63 第四章 結論 66 參考文獻 68

    [1] G.V.R. Inc., Automotive electronics market to reach $279.96 billion by 2020, 2017. Available: https://sites.google.com/site/technologyresearchreport/automotive-electronics-market
    [2] H.J. Heider, M. Schallehn, C. Schlegel et al., An autonomous car roadmap for suppliers, 2017. Available: https://www.bain.com/insights/an-autonomous-car-roadmap-for-suppliers/
    [3] D.S. Farquhar, A.M. Seman, and M.D. Poliks, "Manufacturing experience with high performance mixed dielectric circuit boards", IEEE Trans. Adv. Packag., Vol, 22, pp. 153-159, 1999.
    [4] X. Zhang, Galvanic corrosion, vol, 51, Mississauga, Ontario, Canada: John Wiley & Sons, Inc., 2011.
    [5] Galvanic Corrosion, 2019. Available: https://structx.com/Material_Properties_001.html
    [6] K. Xiao, X. Gao, L. Yan et al., "Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment: Salty dust and diurnal temperature difference", Chemical Engineering Journal, Vol, 336, pp. 92-101, 2018.
    [7] M. Stratmann and H. Streckel, "On the atmospheric corrosion of metals which are covered with thin electrolyte layers 1. verification of the experimental-technique", Corrosion Science, Vol, 30, pp. 681-696, 1990.
    [8] M. Jönsson, D. Persson, and C. Leygraf, "Atmospheric corrosion of field-exposed magnesium alloy AZ91D", Corrosion Science, Vol, 50, pp. 1406-1413, 2008.
    [9] T. Kamimura, K. Kashima, K. Sugae et al., "The role of chloride ion on the atmospheric corrosion of steel and corrosion resistance of Sn-bearing steel", Corrosion Science, Vol, 62, pp. 34-41, 2012.
    [10] I. Odnevall and C. Leygrarf, "The atmospheric corrosion of nickel in a rural atmosphere", Journal of the Electrochemical Society, Vol, 144, pp. 3518-3525, 1997.
    [11] S. Jouen, M. Jean, and B. Hannoyer, "Atmospheric corrosion of nickel in various outdoor environments", Corrosion science, Vol, 46, pp. 499-514, 2004.
    [12] E. Salahinejad, R. Eslami-Farsani, and L. Tayebi, "Corrosion failure analysis of printed circuit boards exposed to H2S-containing humid environments", Engineering Failure Analysis, Vol, 79, pp. 538-546, 2017.
    [13] E. Salahinejad, R.E. Farsani, and L. Tayebi, "Synergistic galvanic-pitting corrosion of copper electrical pads treated with electroless nickel-phosphorus/immersion gold surface finish", Engineering Failure Analysis, Vol, 77, pp. 138-145, 2017.
    [14] F. Farelas, Y. Choi, and S. Nešić, "Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide", Corrosion, Vol, 69, pp. 243-250, 2012.
    [15] N. Kladkaew, R. Idem, P. Tontiwachwuthikul et al., "Corrosion behavior of carbon steel in the monoethanolamine− H2O− CO2− O2− SO2 system: Products, reaction pathways, and kinetics", Industrial & Engineering Chemistry Research, Vol, 48, pp. 10169-10179, 2009.
    [16] P.T. Vianco, "An overview of surface finishes and their role in printed circuit board solderability and solder joint performance", Circuit World, Vol, 25, pp. 6-24, 1999.
    [17] K. Sweatman, "Hot air solder leveling in the lead-free era", Global SMT & Packaging, pp. 10-18, 2009.
    [18] W.-S. Chao, W.-H. Wang, T.-C. Luo et al., "The comparison on the corrosion resistance of different kinds of PCB surface finishing: OSP, LF HASL and ENIG," 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) pp. 159-162, 2012.
    [19] D. Chang, F. Bai, Y. Wang et al., "The study of OSP as reliable surface finish of BGA substrate," Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004)(IEEE Cat. No. 04EX971) pp. 149-153, 2004.
    [20] M. Ramirez, L. Henneken, and S. Virtanen, "Oxidation kinetics of thin copper films and wetting behaviour of copper and Organic Solderability Preservatives (OSP) with lead-free solder", Applied Surface Science, Vol, 257, pp. 6481-6488, 2011.
    [21] K. Hannigan, M. Reid, M. Collins et al., "Corrosion of RoHS-Compliant surface finishes in corrosive mixed flowing gas environments", Journal of electronic materials, Vol, 41, pp. 611-623, 2012.
    [22] 台灣電路板產業學院, 電路板濕製程全書: 台灣電路板協會, 2005.
    [23] 林定皓, 高密度印刷電路板技術: 台灣電路板協會, 2004.
    [24] K.N. Tu, Solder Joint Technology: Springer-Verlag New York, 2007.
    [25] K.N. Tu, C. Chen, and A.T. Wu, Stress analysis of spontaneous Sn whisker growth, Lead-Free Electronic Solders, Springer2006, pp. 269-281.
    [26] K.-N. Tu, J.-o. Suh, A.T.-C. Wu et al., "Mechanism and prevention of spontaneous tin whisker growth", Materials transactions, Vol, 46, pp. 2300-2308, 2005.
    [27] H. Chen, H.Y. Lee, C.S. Ku et al., "Evolution of residual stress and qualitative analysis of Sn whiskers with various microstructures", Journal of materials science, Vol, 51, pp. 3600-3606, 2016.
    [28] C.H. Su, H. Chen, H.-Y. Lee et al., "Kinetic analysis of spontaneous whisker growth on pre-treated surfaces with weak oxide", Journal of electronic materials, Vol, 43, pp. 3290-3295, 2014.
    [29] C.H. Su, H. Chen, H.-Y. Lee et al., "Controlled positions and kinetic analysis of spontaneous tin whisker growth", Applied Physics Letters, Vol, 99, p. 131906, 2011.
    [30] A.T. Wu and Y.C. Ding, "The suppression of tin whisker growth by the coating of tin oxide nano particles and surface treatment", Microelectronics Reliability, Vol, 49, pp. 318-322, 2009.
    [31] G.J. Chou and R.D. Hilty, "Effects of lead-free surface finishes on press-fit connections," Proceedings of the IPC Annual Meeting pp. S07-2, 2003.
    [32] N. Corman, M. Myers, and C. Copper, "Friction behavior of press-fit applications: test apparatus and methodology [connector pins]," Proceedings of the Forty-Ninth IEEE Holm Conference on Electrical Contacts, 2003. pp. 38-44, 2003.
    [33] W.H. Abbott, "The development and performance characteristics of mixed flowing gas test environment", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol, 11, pp. 22-35, 1988.
    [34] R. Schueller, "Creep corrosion on lead-free printed circuit boards in high sulfur environments", SMTA News and Journal of Surface Mount Technology, Vol, 21, p. 21, 2008.
    [35] D. Cullen, B. Kline, G. Moderhock et al., "Effects of surface finish on high-frequency signal loss using various substrate materials", CIRCUITREE-CAMPBELL-, Vol, 14, pp. 80-80, 2001.
    [36] X. Wu, D. Cullen, G. Brist et al., "Surface finish effects on high-speed signal degradation", IEEE Trans. Adv. Packag., Vol, 31, pp. 182-189, 2008.
    [37] S.C. Thierauf, High-speed circuit board signal integrity: Artech House, 2017.
    [38] W. Wang, A. Choubey, M.H. Azarian et al., "An assessment of immersion silver surface finish for lead-free electronics", Journal of electronic materials, Vol, 38, pp. 815-827, 2009.
    [39] Y. Zhou and M. Pecht, "Investigation on mechanism of creep corrosion of immersion silver finished printed circuit board by clay tests," 2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts pp. 324-333, 2009.
    [40] S. Zhang, M. Osterman, A. Shrivastava et al., "The influence of H2S exposure on immersion-silver-finished PCBs under mixed-flow gas testing", IEEE transactions on device and materials reliability, Vol, 10, pp. 71-81, 2009.
    [41] G. Milad and R. Mayes, "Electroless nickel/immersion gold finishes for application to surface mount technology: A regenerative approach", Metal Finishing, Vol, 96, pp. 42-46, 1998.
    [42] M. Goosey, "Factors influencing the formation of “black pad” in electroless nickel-immersion gold solderable finishes—a processing perspective", Circuit World, Vol, 28, pp. 36-39, 2002.
    [43] K. Zeng, R. Stierman, D. Abbott et al., "Root cause of black pad failure of solder joints with electroless nickel/immersion gold plating," Thermal and Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM'06. The Tenth Intersociety Conference on pp. 1111-1119, 2006.
    [44] K.H. Kim, J. Yu, and J.H. Kim, "A corrosion couple experiment reproducing the black pad phenomenon found after the electroless nickel immersion gold process", Scripta Materialia, Vol, 63, pp. 508-511, 2010.
    [45] H. Fu, D. Lee, J. Lee et al., "Creep corrosion failure analysis on ENIG printed circuit boards," 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) pp. 124-129, 2015.
    [46] S. Krumbein, "Corrosion through porous gold plate", IEEE Transactions on Parts, Materials and Packaging, Vol, 5, pp. 89-98, 1969.
    [47] C. Maul, J.W. McBride, and J. Swingler, "Intermittency phenomena in electrical connectors", IEEE Transactions on Components and Packaging Technologies, Vol, 24, pp. 370-377, 2001.
    [48] R. Martens and M.G. Pecht, "An investigation of the electrical contact resistance of corroded pore sites on gold plated surfaces", IEEE Trans. Adv. Packag., Vol, 23, pp. 561-567, 2000.
    [49] R.S. Mroczkowski, "Concerning reliability modeling of connectors," Electrical Contacts-1998. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No. 98CB36238) pp. 57-68, 1998.
    [50] M. Reid, J. Punch, G. Grace et al., "Corrosion resistance of copper-coated contacts", Journal of The Electrochemical Society, Vol, 153, pp. B513-B517, 2006.
    [51] C.C. Li, W.L. Shih, C.K. Chung et al., "Amorphous Pd layer as a highly effective oxidation barrier for surface finish of electronic terminals", Corrosion Science, Vol, 83, pp. 419-422, 2014.
    [52] C.E. Ho, W.Z. Hsieh, P.T. Lee et al., "High-temperature stability of Au/Pd/Cu and Au/Pd (P)/Cu surface finishes", Applied Surface Science, Vol, 434, pp. 1353-1360, 2018.
    [53] J. Balaraju, T.S. Narayanan, and S. Seshadri, "Electroless Ni–P composite coatings", Journal of applied electrochemistry, Vol, 33, pp. 807-816, 2003.
    [54] N.N. Le, T.C.H. Phan, A.D. Le et al., "Optimization of copper electroplating process applied for microfabrication on flexible polyethylene terephthalate substrate", Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol, 6, p. 035007, 2015.
    [55] C. Choe, C. Chen, S. Noh et al., "Thermal shock performance of DBA/AMB substrates plated by Ni and Ni–P layers for high-temperature applications of power device modules", Materials, Vol, 11, p. 2394, 2018.
    [56] Q. Zhou, J. He, D. Sun et al., "Deformation and fracture of nickel phosphorus coatings", Scripta materialia, Vol, 54, pp. 603-608, 2006.
    [57] W. Dai, C. Oropeza, K. Lian et al., "Experiment design and UV-LIGA microfabrication technology to study the fracture toughness of Ni microstructures", Microsystem technologies, Vol, 12, pp. 306-314, 2006.
    [58] A. Roman, D. Chicot, and J. Lesage, "Indentation tests to determine the fracture toughness of nickel phosphorus coatings", Surface and Coatings Technology, Vol, 155, pp. 161-168, 2002.
    [59] J. Tang and Y. Zuo, "Study on corrosion resistance of palladium films on 316L stainless steel by electroplating and electroless plating", Corrosion Science, Vol, 50, pp. 2873-2878, 2008.
    [60] R. Elansezhian, B. Ramamoorthy, and P. Kesavan Nair, "Effect of surfactants on the mechanical properties of electroless (Ni–P) coating", Surface and Coatings Technology, Vol, 203, pp. 709-712, 2008.
    [61] F. Sansoz, K.D. Stevenson, R. Govinthasamy et al., "Making the surface of nanocrystalline Ni on an Si substrate ultrasmooth by direct electrodeposition", Scripta Materialia, Vol, 59, pp. 103-106, 2008.
    [62] A.M. Abdul-Lettif, "Investigation of interdiffusion in copper–nickel bilayer thin films", Physica B: Condensed Matter, Vol, 388, pp. 107-111, 2007.
    [63] A. Aleshin, V. Egorov, B. Bokstein et al., "Study of diffusion in thin Au Cu films", Thin solid films, Vol, 223, pp. 51-55, 1993.
    [64] J.A. Dean, Lange's handbook of chemistry: New york; London: McGraw-Hill, Inc., 1999.
    [65] G.G. Harman, Wire bonding in microelectronics: materials, processes, reliability and yield: McGraw-Hill, 1997.
    [66] V.K. Murugan, Z. Jia, G.J. Syaranamual et al., "Atmospheric corrosion resistance of electroplated Ni/Ni–P/Au electronic contacts", Microelectronics Reliability, Vol, 60, pp. 84-92, 2016.
    [67] K. Sasaki and G.T. Burstein, "The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential", Corrosion Science, Vol, 38, pp. 2111-2120, 1996.
    [68] T. Suter, Y. Müller, P. Schmutz et al., "Microelectrochemical studies of pit initiation on high purity and ultra high purity aluminum", Advanced Engineering Materials, Vol, 7, pp. 339-348, 2005.
    [69] S. Sharland, "A review of the theoretical modelling of crevice and pitting corrosion", Corrosion science, Vol, 27, pp. 289-323, 1987.
    [70] S.M. Lee, W.G. Lee, Y.H. Kim et al., "Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel", Corrosion Science, Vol, 63, pp. 404-409, 2012.
    [71] M.G. Fontana, Corrosion engineering: Tata McGraw-Hill Education, 2005.

    QR CODE
    :::