跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁佩珊
Leung Pui Shan
論文名稱: VUV and EUV irradiation of CH4+NH3 ice mixtures
指導教授: 陳俞融
Chen Yu Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 63
中文關鍵詞: 星際冰晶冥衛一真空紫外光極紫外光
外文關鍵詞: interstellar ice, Charon, VUV irradiation, EUV irradiation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自二十世紀以來,科學家藉著天文觀測技術的進步希望能從太空 中尋找出與地球生命起源相關的脈絡。除了天文觀測外,如今在實驗 室中模擬外太空的環境也已可行,透過實驗室中的模擬太空中極端的 化學反應已成為目前瞭解地外化學環境的研究風潮。本論文主要的目 的是希望瞭解如何透過光激發一些簡單的無機分子混合冰來形成CN化 學鍵的鍵結生成,此為生成氨基酸前必要的化學鍵結。我們在低溫下 製備了一系列不同濃度CH4和NH3的混合冰晶,利用真空紫外光及極 紫外光照射這些不同比例混合的冰晶樣品並且透過測量其紅外光譜及 質譜的變化而有系統的研究CN−及CH3NH2的生成機制。我們亦將實 驗結果與Kim和Kaiser(2011)[1]之前以5000 eV的電子照射結果做比對 討論光激發與電子輻射激發機制的不同。我們的實驗結果除了可以用 來模擬冥衛一(Charon)表面的化學反應外也提供了在冥衛一的經過冬 季後偵測CN−的可能性。人們對於外太空的好奇與探索正如我們的宇 宙一樣永無止境。


    We never stop the exploration of the outer space. Since 1900s, as- tronomers have observed all over the sky to seek origin of life. Apart from observing stars, we may simulate the outer space environments and make some simple molecules in laboratories on the earth now. To investigate the formation of CN−, we deposite CH4 and NH3 (mechanism proposed by Kim and Kaiser (2011)[1]) to simulate the surface of Charon. We provide VUV and EUV irradiations as energy sources and mainly use Fourier Transform Infrared Spectrometer (FTIR) and Quadrupole Mass Spectrometer (QMS) to study different concentrations of CH4 to NH3 ice mixtures.

    中文摘要 ............................................................................................. i 英文摘要......................................................................................... ii 誌謝 .................................................................................................... iii Contents ............................................................................................. iv List of Figures..................................................................................... vi List of Tables...................................................................................... ix 1. Introduction..................................................................... 1 2. Methods........................................................................... 6 2.1LaboratoryAstrophysics................ 6 2.1.1 Experimental simulations by IPS system . . . . . . . 6 2.1.2Vacuum-UVsource................... 9 2.1.3Extreme-UVsource .................. 10 2.2ExperimentalProtocol................. 11 2.2.1Preparation of experiments and cooling . . . . . . . . 11 2.2.2Deposition ....................... 11 2.2.3 PhotonIrradiation................... 12 2.2.4 Warmup ........................ 12 2.3 Infra-red spectroscopy and the Beer-Lambert’s Law . 12 2.4ReactionRateLaws .................. 13 3. Results and Discussions ................................................... 17 3.1The infrared spectra and peaks identification……17 3.2 Reaction mechanisms and fitting results . . .22 3.2.1 C2H6………………22 3.2.2 C3H8………………23 3.2.3 CN-……………….24 3.3 The Concentration Effects in CN- formation and the relation with C2H6 and C3H8………………….28 3.3.1 Cyanide ion and Ethane................ 28 3.4 Photon Energy Effect-EUV and VUV. . . . . . . . 30 3.5 Residues ........................36 3.6 Summary........................37 4. Astrophysical Implications...............................................39 4.1 MethylamineandCyanideion.............39 4.2 The destruction of methane and ammonia by photon sources and electrons............. 40 4.3 Cyanide ion produced by photon sources and electrons 41 4.4 Conclusion ....................... 43 Bibliography ....................................................................................... 44

    [1] Y. Kim and R. Kaiser, “On the formation of amines (RNH2) and the cyanide anion (CN−) in electron-irradiated ammonia-hydrocarbon interstellar model ices,” The Astrophysical Journal, vol. 729, no. 1, p. 68, 2011.
    [2] W. Grundy, R. Binzel, B. Buratti, J. Cook, D. Cruikshank, C. Dalle Ore, A. Earle, K. Ennico, C. Howett, A. Lunsford et al., “Surface compositions across Pluto and Charon,” Science, vol. 351, no. 6279, p. aad9189, 2016.
    [3] W. Grundy, D. Cruikshank, G. Gladstone, C. Howett, T. Lauer, J. Spencer, M. Summers, M. Buie, A. Earle, K. Ennico et al., “The formation of Charon’s red poles from seasonally cold-trapped volatiles,” Nature, vol. 539, no. 7627, pp. 65–68, 2016.
    [4] Y.-J. Chen, K.-J. Chuang, G. M. Caro, M. Nuevo, C.-C. Chu, T.-S. Yih, W.-H. Ip, and C.-Y. Wu, “Vacuum ultraviolet emission spec- trum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: application to photodesorption of CO ice,” The Astrophysical Journal, vol. 781, no. 1, p. 15, 2013.
    [5] J. Kissel, F. Krueger, J. Silén, and B. Clark, “The cometary and interstellar dust analyzer at comet 81P/Wild 2,” Science, vol. 304, no. 5678, pp. 1774–1776, 2004.
    [6] L. d’Hendecourt and L. Allamandola, “Time dependent chemistry in dense molecular clouds. III-infrared band cross sections of molecules in the solid state at 10 K,” Astronomy and Astrophysics Supplement Series, vol. 64, pp. 453–467, 1986.
    [7] J. C. Cook, S. J. Desch, T. L. Roush, C. A. Trujillo, and T. Geballe, “Near-infrared spectroscopy of Charon: Possible evidence for cryo-
    44
    volcanism on Kuiper belt objects,” The Astrophysical Journal, vol. 663, no. 2, p. 1406, 2007.
    [8] M. E. Brown and W. M. Calvin, “Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon,” Science, vol. 287, no. 5450, pp. 107–109, 2000.
    [9] W. A. Hoey, S. K. Yeoh, L. M. Trafton, D. B. Goldstein, and P. L. Varghese, “Rarefied gas dynamic simulation of transfer and escape in the Pluto–Charon system,” Icarus, no. 287, pp. 87–102, 2017.
    [10] G. R. Gladstone, W. R. Pryor, and S. A. Stern, “Lyα@ pluto,” Icarus, vol. 246, pp. 279–284, 2015.
    [11] S. Kundu, V. S. Prabhudesai, and E. Krishnakumar, “Electron in- duced reactions in condensed mixtures of methane and ammonia,” Physical Chemistry Chemical Physics, vol. 19, no. 37, pp. 25 723– 25 733, 2017.
    [12] S. Stern, J. Kammer, G. Gladstone, A. Steffl, A. Cheng, L. Young, H. Weaver, C. Olkin, K. Ennico, J. W. Parker et al., “New Horizons constraints on Charon’s present day atmosphere,” Icarus, vol. 287, pp. 124–130, 2017.
    [13] T.-F. Hsieh, L.-R. Huang, S.-C. Chung, T.-E. Dann, P.-C. Tseng, C. Chen, and K.-L. Tsang, “Design of a high-flux and high- resolution VUV bending-magnet beamline,” Journal of synchrotron radiation, vol. 5, no. 3, pp. 562–564, 1998.
    [14] H. Imanaka, B. N. Khare, J. E. Elsila, E. L. Bakes, C. P. McKay, D. P. Cruikshank, S. Sugita, T. Matsui, and R. N. Zare, “Labora- tory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze,” Icarus, vol. 168, no. 2, pp. 344–366, 2004.
    [15] M. Moore and R. Hudson, “Infrared study of ion-irradiated water- ice mixtures with hydrocarbons relevant to comets,” Icarus, vol. 135, no. 2, pp. 518–527, 1998.
    45

    [16] J. A. Noble, P. Theule, F. Borget, G. Danger, M. Chomat, F. Du- vernay, F. Mispelaer, and T. Chiavassa, “The thermal reactivity of HCN and NH3 in interstellar ice analogues,” Monthly Notices of the Royal Astronomical Society, vol. 428, no. 4, pp. 3262–3273, 2012.
    [17] J.-B. Bossa, P. Theulé, F. Duvernay, F. Borget, and T. Chiavassa, “Carbamic acid and carbamate formation in NH3+CO2 ices–UV irradiation versus thermal processes,” Astronomy & Astrophysics, vol. 492, no. 3, pp. 719–724, 2008.
    [18] M. Moore and R. Hudson, “Infrared study of ion-irradiated N2- dominated ices relevant to Triton and Pluto: Formation of HCN and HNC,” Icarus, vol. 161, no. 2, pp. 486–500, 2003.
    [19] Y. Kim and R. Kaiser, “Abiotic Formation of Carboxylic Acids (RCOOH) in Interstellar and Solar System Model Ices,” The As- trophysical Journal, vol. 725, no. 1, p. 1002, 2010.
    [20] G. Socrates, “Infrared and Raman Characteristic Group Frequen- cies, 3rd,” 2001.
    [21] C. J. Bennett and R. I. Kaiser, “The formation of acetic acid (CH3COOH) in interstellar ice analogs,” The Astrophysical Jour- nal, vol. 660, no. 2, p. 1289, 2007.
    [22] W. Zheng, D. Jewitt, Y. Osamura, and R. I. Kaiser, “Formation of nitrogen and hydrogen-bearing molecules in solid ammonia and im- plications for solar system and interstellar ices,” The Astrophysical Journal, vol. 674, no. 2, p. 1242, 2008.
    [23] R. Hudson and M. Moore, “Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles,” Icarus, vol. 172, no. 2, pp. 466– 478, 2004.
    [24] C. J. Bennett, C. S. Jamieson, Y. Osamura, and R. I. Kaiser, “Laboratory studies on the irradiation of methane in interstellar, cometary, and solar system ices,” The Astrophysical Journal, vol. 653, no. 1, p. 792, 2006.
    46

    [25] S. Irle and K. Morokuma, “A molecular orbital study on H and H2 elimination pathways from methane, ethane, and propane,” The Journal of Chemical Physics, vol. 113, no. 15, pp. 6139–6148, 2000.
    [26] G. Cruz-Diaz, G. M. Caro, Y.-J. Chen, and T.-S. Yih, “Vacuum-UV spectroscopy of interstellar ice analogs-I. Absorption cross-sections of polar-ice molecules,” Astronomy & Astrophysics, vol. 562, p. A119, 2014.
    [27] ——, “Vacuum-UV spectroscopy of interstellar ice analogs-II. Ab- sorption cross-sections of nonpolar ice molecules,” Astronomy & As- trophysics, vol. 562, p. A120, 2014.
    [28] S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Accounts of chemical research, vol. 36, no. 4, pp. 255–263, 2003.
    [29] J.-B. Bossa, D. Paardekooper, K. Isokoski, and H. Linnartz, “Methane ice photochemistry and kinetic study using laser desorp- tion time-of-flight mass spectrometry at 20 K,” Physical Chemistry Chemical Physics, vol. 17, no. 26, pp. 17 346–17 354, 2015.
    [30] B. P. Tsai and J. H. Eland, “Mass spectra and doubly charged ions in photoionization at 30.4 nm and 58.4 nm,” International Journal of Mass Spectrometry and Ion Physics, vol. 36, no. 2, pp. 143–165, 1980.
    [31] N. Ligterink, E. Tenenbaum, and E. Van Dishoeck, “Search for methylamine in high mass hot cores,” Astronomy & Astrophysics, vol. 576, p. A35, 2015.
    [32] M. K. Georgieva and E. A. Velcheva, “Computational and experi- mental studies on the IR spectra and structure of the simplest ni- triles (C1 and C2), their anions, and radicals,” International journal of quantum chemistry, vol. 106, no. 6, pp. 1316–1322, 2006.

    QR CODE
    :::