跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊雅傑
Ya-Chieh Chuang
論文名稱: Cu/Mg比與熱處理對Al-Cu-Mg-Ag合金應力腐蝕性之影響
指導教授: 李勝隆
Sheng-Long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 61
中文關鍵詞: 熱處理應力腐蝕破裂
外文關鍵詞: stress corroson crack, Al-Cu-Mg-Ag
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    Al-Cu-Mg-Ag合金為一高強度鋁合金,隨著Cu/Mg比由大到小,強化機制由Ω及θ’相並重至Ω相為主要強化相,且當施行不同熱處理,晶界析出形態也跟著改變,應力腐蝕破裂是Al-Cu-Mg-Ag合金破裂的重要原因之一,其破壞性會隨著析出形態而改變,故本研究探討主題為Cu/Mg比與熱處理對Al-Cu-Mg-Ag合金應力腐蝕破裂之影響。
    本研究設計不同Cu/Mg比(Cu/Mg重量比=4、8、19、29)之四種合金,施以不同的時效熱處理(T4、T6、T7、RRA),探討在應力腐蝕環境之下,各種時效熱處理條件對應力腐蝕敏感性的影響。利用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、微差掃描熱分析儀(DSC)、導電度(%IACS)、硬度試驗、拉伸試驗(Tensile Test)與慢應變速率試驗(SSRT)等方法,探討微結構的變化與材料機械性質與抗應力腐蝕敏感性之關係。再根據實驗結果,尋求一兼具高強度與高抗應力腐蝕破壞Al-Cu-Mg-Ag鋁合金的製造方法及合金成份設計。
    由結果可知,Cu/Mg重量比=8、19在進行T6、T7與RRA時效熱處理後均擁有高強度,但其中以Cu/Mg重量比=19實施T7時效熱處理之抗應力腐蝕最為顯著;顯示出Mg含量越多,雖然使析出相分布更為細密,卻也造成晶界處陽極溶解效應越趨嚴重;而T7熱處理,晶界析出物粗大且不連續,也使得抗應力腐蝕破裂效果較T6、RRA佳。


    None

    總目錄 摘要.......................................................I 謝誌......................................................II 總目錄...................................................III 圖目錄.....................................................V 表目錄...................................................VII 一、前言...................................................1 1.1 Al-Cu-Mg-Ag合金簡介...................................1 1.2 Al-Cu-Mg-Ag合金之析出強化相...........................2 1.3 Cu/Mg比對Al-Cu-Mg-Ag合金析出強化相之影響..............3 1.4 應力腐蝕簡介..........................................3 1.5 Al-Cu-Mg-Ag合金之腐蝕形態.............................7 1.6 時效處理對抗應力腐蝕破裂之影響........................9 1.7 慢速率應變試驗法(Slow Strain Rate Test, SSRT).........9 二、實驗步驟與方法........................................12 2.1 合金配製之擠製及熱處理...............................12 2.2 微結構分析...........................................14 2.2.1 OM金相觀察及EPMA分析...............................14 2.2.2 掃瞄式電子顯微鏡(SEM)..............................14 2.2.3 穿透式電子顯微鏡(TEM)..............................14 2.2.4 微差掃瞄熱分析儀(DSC)..............................15 2.2.5 導電度(%IACS)......................................15 2.3 機械性質分析.........................................15 2.3.1 硬度試驗...........................................15 2.3.2 拉伸試驗...........................................15 三、結果與討論............................................17 3.1 微結構分析...........................................17 3.1.1 金相觀察...........................................17 3.1.2 導電度量測(%IACS)..................................17 3.1.3 微分掃瞄熱分析(DSC)................................24 3.1.4 TEM分析............................................28 3.2 機械性質與應力腐蝕分析...............................34 3.2.1 硬度量測...........................................34 3.2.2 拉伸試驗...........................................38 3.2.3 應力腐蝕試驗.......................................38 3.3 綜合分析.............................................45 四、結論..................................................48 五、未來研究方向..........................................50 六、參考資料..............................................51

    六、參考資料
    1. S. P. Ringer, K. Hono, T. Sakurai, I. J. Polmear, “ Cluster Hardening in an Aged Al-Cu-Mg Alloy ” , Scripta Materialia, Vol.36, No.5, (1997), pp.517-521
    2. J. Raffin, US Patent No.3475166, Oct.26, (1969)
    3. I. J. Polmear, M. J. Couper, “ Design and Development of an Experimental Wrought Aluminum Alloy for Use at Elevated Temperatures ” , Metallurgical Transactions A, Vol.19A, (1988), pp. 1027-1035
    4. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge, S. Roger, “ After Concorde: Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys ” , Materials Science and Technology, Vol.15, (1999), pp.861-868
    5. B. C. Muddle, I. J. Polmear, “ The Precipctate Ω Phase in Al-Cu-Mg-Ag Alloys ” , Acta metal., Vol.37, No.3, (1989), pp.777-789
    6. K. M. Knowles, W. M. Stobbs, “ The Structure of {111} Age- Hardening Precipitates in Al-Cu-Mg-Ag Alloys ” , Acta Cryst., B44, (1988), pp.207-227
    7. A. Garg, J. M. Howe, “ Convergent-Beam Electron Diffraction Analysis of the Ω Phase in an Al-4.0Cu-0.5Mg-0.5Ag Alloy ” , Acta metal. mater., Vol.39, No.8, (1991), pp.1939-1946
    8. R. J. Chester, I. J. Polmear, “ TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys ” , Micron, Vol.11, (1980), pp. 311-312
    9. S. P. Ringer, W. Yeung, B. C. Muddle, I. J. Polmear, “ Precipitate Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures ” , Acta metal. mater., Vol.42, No.5, (1994), pp.1715-1725
    10. K. Hono, N. Sano, S. S. Babu, R. Okano, T. Sakurai, “ Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys ” , Acta metal. mater., Vol.41, No.3, (1993), pp.829-838
    11. R. K. Wyss, R. E. Sanders, “ Microstructure-Property Relationship in a 2xxx Aluminum Alloy with Addition ” , Metallurgical Transactions A, Vol.19A, (1988), pp.2523-2530
    12. M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma, T. Endo, “ Discontinuity of G.P.(I) Zone and θ”-Phase in an Al-Cu Alloy ” , Scripta Materialia, Vol.41, No.6, (1999), pp.643-649
    13. 張志鴻, “ 銀含量對於A201鑄造鋁合金Ω相析出影響 ” , 國立中央大學機械工程研究所碩士論文, (2000)
    14. K. Hono, T. Sakurai, I. J. Polmear, “ Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy ” , Scripta Metallurgica et Materialia, Vol.30, No.6, (1994), pp.695-700
    15. A. K. Mukhopadhyay, “ Nucleation of Ω Phase in an Al-Cu-Mg Alloy Containing Small Addition of Ag ” , Materials Transactions, JIM, Vol.38, No.5, (1997), pp.478-482
    16. A. Garg, Y. C. Chang, J. M. Howe, “ Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg Alloy ” , Scripta Metallurgica et Materialia, Vol.24, (1990), pp.677-680
    17. L. Reich, M. Murayama, K. Hono, “ Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy-A Three-Dimension Atom Probe Study ” , Acta mater., Vol.46, No.17, (1998), pp.6053-6052
    18. L. D. Castillo, E. J. Lavernia, “ Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(-Ag-Mn) Alloys ” , Metallurgical and Materials Transactions A, Vol.31A, (2000), pp. 2287-2298
    19. O. Beffort, C. Solenthaler, P. J. Uggowitzer, M. O. Speidel, “ High Toughness and High Strength Spray-Deposited AlCuMgAg-Base Alloys for Use at Moderately Elevated Temperatures ” , Materials Science & Engineering A191, (1995), pp.121-134
    20. D. A. Jones, “ Principles and Prevention of Corrosion 2nd ed. ” , Prentice Hall International, Inc., (1997), pp.235-244
    21. 柯賢文, “ 腐蝕及其防治 ” , 全華科技圖書股份有限公司, (1995), pp.167-181
    22. 蔡騰群, “ 超塑性7475鋁鋅鎂合金應力腐蝕性質研究 ” , 國立台灣大學材料科學與工程學研究所博士論文, (1996)
    23. A. J. Sedriks, J. A. S. Green, D. L. Novak, “ On the Chemistry of the Solution at tips of Stress Corrosion Cracks in Al Alloys ”, Corrosion-Nace, Vol.27, No.5, (1971), pp.198-202
    24. T. D. Burleigh, “ The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys “ , Corrosion, vol.47, (1991), pp.89-98
    25. M. S. Misra, K. J. Oswalt, “ Corrosion Behavior of Al-Cu-Ag(201) Alloy ” , Metals Engineering Quarterly, (1976), pp.39-44
    26. M. O. Speidel, M. V. Hyatt, “ Advances in Corrosion Science and Technology “ , Vol.2, (1972), pp.224-243
    27. M. O. Speidel, “ Stress Corrosion Cracking of Aluminum Alloys ” , Metallurgical Transactions A, (1975), pp.631-651
    28. H. F. de Jong, “ Evaluation of the Constant Strain Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys ” , Corrosion-Nace, Vol.34, No.1, (1978), pp.32-36
    29. R. N. Parkins, F. Mazza, J. J. Royuela, J. C. Scully, “ Stress Corrosion Test Methods ” , Br. Corros. J., Vol.7, (1972), pp.154-167
    30. K. Rajan, W. Wallace, J. Beddoes, “ Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminum Alloy ” , Journal of Materials Science, Vol.17, (1982), pp.2817-2824
    31. ASTM B597-83, Annual Book of ASTM Standards, Vol.02.02, (1984)
    32. ASTM B557M-81, Annual Book of ASTM Standards, Vol.03.01, (1991)
    33. A. K. Mukhopadhyay, “ On the Nature of the Second Phase Particles Present in an As-Cast Al-Cu-Mg-Ag Alloy ” , Scripta Materialia, Vol.41, (1999), pp.667-672
    34. A. K. Mukhopadhyay, “ Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg(-Li) Alloys Containing Ag ” , Metallurgical and Materials Transactions A, Vol.30A, (1999), pp.1693-1704
    35. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “ 工程材料科學 ” , 全華科技圖書股份有限公司, (1999), pp.399-432
    36. J. E. Hatch, “ Aluminum Properties and Physical Metallurgy ” , American Society for Metals, Metals Park, Ohio, (1984), pp.175-177
    37. 吳典黻, “ Fe含量對A206鑄造鋁合金機械性質之影響 ” , 國立中央大學機械工程研究所碩士論文, (1997)
    38. O. Beffort, C. Solenthaler, M. O. Speidel, “ Improvement of Strength and Fracture Toughness of a Spray-Deposited Al -Cu-Mg-Ag-Mn-Ti-Zr Alloy by Optimize Heat Treaments and Thermomechanical Treatments ” , Materials Science & Engineering A191, (1995), pp.113-120
    39. D. A. Jones, “ Principles and Prevention of Corrosion 2nd ed. ” , Prentice Hall International, Inc., (1997), pp.168-198

    QR CODE
    :::