跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳姵萱
Pei -Syuan Wu
論文名稱: 以離心試驗及數值模型探討高角度逆向坡整治策略與其破壞機制之關係
nono
指導教授: 黃文昭
Wen -Chao Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 157
中文關鍵詞: 逆向坡地工離心機PFC3D預力岩錨岩釘整治
外文關鍵詞: anti-dip slope, centrifuge tests, PFC3D, pre-stressed rock anchor, rock dowel
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以先前胡家豪(2019)研究成果為基礎,探討不同整治工法對於整治效果之影響,並從數值分析結果與參數分析中,了解整治效果之發揮機制以及不同設計參數對應之整治效果。本研究採用簡化逆向岩坡為先前分析模型中,變形與破壞狀況最為嚴重的模型,依照該模型之破壞與變形狀況,規劃採用預力岩錨與全段灌漿之岩釘進行整治,探討整治效果之發揮情形。
    研究結果顯示,離心試驗結果中,預力岩錨施加之預力隨重力場提升瞬間而上升,並隨岩石片變形及破壞過程而逐漸下降至一穩定值,岩石片之變形與倒塌狀況較未整治岩坡更為輕微。而就離心試驗中岩釘整治岩坡來說,其變形與破壞區之發展也與未整治岩坡相較輕微。
    本研究以離心試驗結果為基礎,建立相同配置之離散元素數值模型。驗證後的數值模型顯示,預力岩錨整治岩坡於岩坡淺層靠近承壓板處有一定範圍受到壓力作用,而隨著坡體逐漸變形或破壞,有更大的區域承受壓力區,此區也可能代表相對穩定區,而緊臨壓力區上方的區域,則有一定範圍之受拉力區,由於岩層抗拉強度較抗壓強度低,此區域可能代表潛在之破壞區。當岩坡開始變形時,亦可以看到岩釘發揮其坡體加勁的效果,使得僅有少部分岩層受到輕微拉力之作用。
    此外,數值模型也針對預力岩錨及岩釘設計不同整治參數加以分析,岩錨模型變因包含增加重力場、減少岩錨預力、施打不同岩錨角度及位置。模擬結果顯示,增加重力場時導致原施加之預力不足,與預力減少對於岩坡穩定性均會有打折之效果,施打較不利之岩錨角度會對增加岩坡的破壞與變形狀況,當岩錨施打至較有利位置時,岩坡則相對穩定。岩釘模型變因包含增加重力場、減少岩釘長度、施打不同岩釘角度及位置。增加重力場下的岩釘無法發揮有效整治效果,施打岩釘長度不足時亦會發生嚴重之變形與破壞,岩釘施打角度未來穿過可能的破壞面時,將使岩坡破壞區域明顯提高,施打岩釘的高度有效穿過潛在破壞面時,發生些微變形,但不會產生岩體倒塌破壞。
    綜合以上結論可得出在逆向坡使用預力岩錨整治時,岩錨給予岩體的預力以及施打高度位置為較重要之因素。岩釘工法中因為灌漿因素所以施打長度以及施打高度及其重要,能使岩釘有效發揮整治之效果,利用有效分析可能產生潛在破壞面調整所需之參數設定,進而有效發揮整治之效果。


    In this study, the mitigation measures for an anti-dip slope model were investigated through centrifuge tests and discrete element modeling. Based on previous studies that were performed by the same research team, the model anti-dip slope that was deformed most significantly was selected in the current study. The model anti-dip slope was mitigated by applying two measures, which are pre-stressed rock anchor and rock dowel. To investigate the variation of axial force in the pre-stressed rock anchor, a set of strain gauges were also applied onto the rock anchor. During the centrifuge tests, a gravity field of 20g was applied in the testing environment which is the same as the previous study for comparison with the un-mitigated anti-dip slope.
    The research results show that in the centrifugal test results, the pre-stressed applied by the pre-stressed rock anchor increases instantaneously with the lifting of the gravity field, and gradually decreases to a stable value with the deformation and failure process of the rock sheet. The deformation and collapse of the rock sheet are relatively stable. Remediation of rock slopes is more minor. For the rock slope rectified by the rock dowel in the centrifugal test, the development of the deformation and damage area is also slightly smaller than that of the unregulated rock slope.
    The discrete element models were established to be the same as the centrifuge test configurations. The numerical models were then verified by varying a number of numerical parameters to be comparable with the deformed and collapsed conditions as in the centrifuge tests. Based on the verified pre-stressed anchor model, it was found that the shallow rock layers close to the regions around the anchor plate are under compression modes, as compared to the un-mitigated models. As the rock anchor-mitigated slope deformed, the compression regions were increased, indicating that the potential deformation zones were reduced. On the other hand, the rock dowel-mitigated slope showed that the rock dowel was tensioned once the slope started to deform. However, the tensioned areas in the slope were not as significant as in the un-mitigated model, indicating that the potential collapsed areas were also reduced. A number of parametric studies are planned to be performed regarding the design parameters of the mitigation measures.
    In addition, the numerical model also analyzes different remediation parameters for pre-stressed rock anchors and rock dowel designs. The rock anchor model variables include increasing the gravity field, reducing the rock anchor pre-stressed, and applying different rock anchor angles and positions. The simulation results show that when the gravity field is increased, the original pre-stressed will be insufficient, and the reduction of the pre-stressed will have the effect of reducing the stability of the rock slope. The unfavorable rock anchor angle will increase the damage and deformation of the rock slope. , when the rock anchor is applied to a more favorable position, the rock slope is relatively stable. The variation factors of the rock dowel model include increasing the gravity field, reducing the length of the rock dowel, and applying different angles and positions of the rock dowel. Increasing the rock dowel under the gravity field cannot play an effective remediation effect, and severe deformation and damage will occur when the length of the rock dowel is insufficient. When the height of the rock dowel is increased, when the height of the rock dowel effectively passes through the potential failure surface, a slight deformation occurs, but the collapse of the rock mass will not occur.
    Based on the above conclusions, it can be concluded that when using pre-stressed rock anchors to rectify the reverse slope, the pre-stressed given to the rock mass by the rock anchor and the position of the applied height are the more important factors. Due to the grouting factor in the rock dowel construction method, the length of the application and the height of the application are very important, so that the rock dowel can effectively exert the effect of remediation, and use the effective analysis of the potential damage surface adjustment.

    摘要.......................................................i Abstract.................................................iii 誌謝......................................................vi 目錄.....................................................vii 圖目錄....................................................xi 表目錄..................................................xvii 第一章 緒論................................................1 1.1 前言...................................................1 1.2 研究目的...............................................2 1.3 論文架構...............................................3 第二章 文獻回顧.............................................4 2.1 逆向坡定義.............................................4 2.2 邊坡破壞分類............................................4 2.3 岩石邊坡變形之特徵......................................5 2.4 邊坡破壞之模式.........................................7 2.5 傾覆破壞...............................................9 2.5.1 傾覆破壞種類..........................................9 2.5.2次要傾覆破壞之種類....................................10 2.6 整治工法.............................................13 2.6.1 整治工法介紹......................................13 2.6.2 整治工法分類......................................13 2.6.3岩坡整治破壞案例......................................20 2.7 地工離心機...........................................22 2.7.1 地工離心機介紹......................................22 2.7.2 地工離心機設備......................................23 2.7.3 地工離心機原理......................................24 2.7.4 離心模型靜態相似率..................................25 2.8 PFC3D介紹...........................................27 2.8.1 PFC3D基本假設.......................................27 2.8.2 運動方程式..........................................28 2.8.3 接觸模式............................................29 2.9 分離元素法探討板岩邊坡變形機制..........................34 2.10 以離心模型試驗與數值模擬探討逆向坡破壞..................38 2.10.1 離心模型試驗........................................38 2.10.2 數值模擬...........................................40 第三章 研究方法............................................42 3.1物理模型試驗............................................42 3.1.1 物理模型假設.........................................42 3.1.2 試體之物理性質.......................................43 3.1.3 試體製作............................................45 3.1.4 模具製作............................................48 3.1.5 離心機設備..........................................54 3.1.6 應變計設計..........................................61 3.1.7 試驗配置............................................64 3.2 數值模擬分析......................................67 3.2.1 數值模擬設定........................................67 3.2.2 數值模擬之參數設定...................................69 第四章 離心機試驗結果與分析................................71 4.1 試驗規劃流程......................................71 4.1.1 離心機試驗結果分析...........................71 4.1.2 定義變形與破壞角度..............................73 4.1.3 定義變形及破壞區域.................................75 4.2物理試驗結果分析......................................76 4.2.1 離心機試驗A-0(預力岩錨整治之逆向坡)..................79 4.3.離心試驗結果比較......................................81 4.3.1未整治簡化逆向坡(胡(2019)試驗2))與岩錨整治岩坡(離心機試驗A-0)之整治效果比較......................................81 4.3.2未整治簡化逆向坡(胡(2019)試驗2))與岩釘整治岩坡(離心機試驗B-0)之整治效果比較...........................................83 4.3.3離心機試驗A-0與離心機試驗B-0之整治效果比較..............85 第五章 以數值模擬結果探討岩坡整治機制與設計參數...............87 5.1數值模擬設定............................................87 5.2 未整治簡化逆向坡(胡(2019)試驗2))驗證模擬................88 5.3 試驗A(預力岩錨)數值模擬試驗規劃.........................89 5.4 試驗A(預力岩錨)整治岩坡之數值模型驗證與討論.............90 5.4.1 數值模擬A-1(重力場20g):............................94 5.4.2 數值模擬A-2(重力場100g):............................95 5.4.3數值模擬A-3(施加預力減半):............................96 5.4.4 數值模擬A-4(施打不利之岩錨角度):.....................98 5.4.5 數值模擬A-5(提高岩錨施打位置):.....................99 5.5數值模擬A(預力岩錨)變形破壞比較小結.....................101 5.6試驗B(岩釘)數值模擬試驗規劃............................102 5.7 試驗B(岩釘試驗)整治岩坡之數值模型驗證與討論.............103 5.7.1 數值模擬B-1(重力場20g):............................104 5.7.2 數值模擬B-2(重力場40g、60g、80g、100g):.............106 5.7.3 數值模擬B-3(岩釘長度變短):..........................108 5.7.4 數值模擬B-4(施打不利之岩釘角度):....................109 5.7.5 數值模擬B-5(提高岩釘施打位置):......................110 5.8 數值模擬B(岩釘)變形破壞比較小結........................111 5.9未整治簡化逆向坡(胡(2019)試驗2))、數值模擬A-1(預力岩錨)及數值模擬B-1(岩釘)比較.........................................112 5.9.1未整治簡化逆向坡(胡(2019)試驗2))與數值模擬A-1(預力岩錨)擋板解開前壓力分佈區比較......................................113 5.9.2未整治簡化逆向坡(胡(2019)試驗2))與數值模擬A-1(預力岩錨)解擋板後壓力比較..............................................114 5.9.3未整治簡化逆向坡(胡(2019)試驗2))、數值模擬A-1及數值模擬B-1解擋板後拉力比較..........................................115 5.10預力岩錨整治岩坡數值模擬之壓力分布圖...................116 5.10.1數值模擬A-1至數值模擬A-5整治岩坡解開擋板前壓力區比較...116 5.10.2數值模擬A-1至數值模擬A-5整治岩坡解開擋板後壓力區比較...118 5.11預力岩錨整治岩坡數值模擬解開擋板後拉力比較..............119 5.11.1數值模擬A-1至A-5整治岩坡變形後之拉力區分布圖比較......120 5.12岩釘整治岩坡數值模擬解開擋板後拉力區比較................121 5.12.1數值模擬B-1至B-5數值模擬整治岩坡解開擋板後拉力區比較...122 第六章 結論及建議.........................................124 6.1結論..................................................124 6.2建議..................................................128 參考文獻.................................................129 附錄Q&A.................................................133

    1.中國土木水利工程學會 (1998),地錨設計與施工準則暨解說,科技圖書公司,台北市。
    2.紀宗吉,林朝宗,劉桓吉(1999)。林肯大郡地層滑動災變原因之探討。地工技術期刊,68,67-74。
    3.社團法人中華民國大地工程學會(2011年2月)。國道3號3.1公里崩塌事件原因調查工作總結報告。交通部。
    4.孫百慶,莊友欽,黃少廷(2017)。台20線南橫公路啞口路段高邊坡施工案例探討,中華技術期刊,116,118-131。
    5.聯合大地工程顧問股份有限公司(2020)。台2 線地質敏感路段( 6 7 K ~ 8 9 K )易致災邊坡測繪、調查、評估工作暨落石告警系統及防護工法委託設計工作期末報告書,台北市:交通部公路總局第一區養護工程處。
    6.長碩工程顧問有限公司(2013)。102 年度臺北市山坡地人工邊坡地錨護坡設施檢測工作委託技術服務案成果報告書,臺北市政府工務局大地工程處。
    7.行政院農業委員會 (2000),水土保持技術規範,台北市。
    8.莊庭鳳 (2014),以分離元素法探討板岩邊坡變形機制,碩士,國立高雄大學土木與環境工程所,高雄市。
    9.趙柏諺 (2018),以室內試驗與數值模型探討簡化高角度逆向坡之變形行為,碩士,國立中央大學土木工程學系,桃園縣。
    10.胡家豪 (2019),以離心模型試驗與數值模型探討高角度逆向坡的破壞行為,碩士,國立中央大學土木工程學系,桃園縣。
    11.鄭皓文 (2019),以數值模型與離心模型試驗探討含二組正交節理之逆向坡變形及破壞行為,碩士,國立中央大學土木工程學系,桃園縣。
    12.魏怡筠 (2021),探討逆向坡受重力變形及降雨影響之破壞型態,碩士,國立中央大學土木工程學系,桃園縣。
    13.李維峰、廖洪鈞、廖瑞堂、劉桓吉、葉啟輝、梁樾、李三畏、顏召宜,賴盈如 (2019)。山區道路邊坡崩塌防治工法最佳化研究(一) ,交通部財團法人台灣營建研究院,台北市。
    14.李宏輝 (2008),砂岩力學行為之微觀機制-以個別元素法探討,博士,國立臺灣大學土木工程學系,台北市。
    15. Ashby, J. (1971). Sliding and toppling modes of failure in models and jointed rock slopes. M. Sci. Thesis, London Univ., Imperial College.
    16. Aydan, Ö. (2016). Large rock slope failures induced by recent earthquakes. Rock Mechanics and Rock Engineering, 49(6), 2503-2524.
    17. Barton, N. (1973). Review of a new shear-strength criterion for rock joints. Engineering geology, 7(4), 287-332.
    18. Chigira, M. (1992). Long-term gravitational deformation of rocks by mass rock creep. Engineering Geology, 32(3), 157-184.
    19. Cundall, P.(1971) A computer model for simulating progressive, large scale movements in blocky rock systems. Proc. Int. Symp. on Rock Fracture. Nancy, France, Paper .pp. 11–8.
    20. Giani, G. P. (1992). Rock slope stability analysis. CRC Press.
    21. Goodman, R. E. and Bray, J. (1976) Toppling of rock slopes. ASCE, Proc. Specialty Conf. on Rock Eng. for Foundations and Slopes, Boulder, CO, 2, pp. 201–34.
    22. Holt, R. M., Kjølaas, J., Larsen, I., Li, L., Pillitteri, A. G., & Sønstebø, E. F. (2005). Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. International Journal of Rock Mechanics and Mining Sciences, 42(7-8), 985-995.
    23. Itasca Consulting Group Inc., (2017). PFC3D (Particle Flow Code in 3 Dimensions), Version 5.0. Minneapolis, MN: ICG.
    24. Madabhushi, G. (2014). Centrifuge modelling for civil engineers. CRC press.
    25. Muller, L. (1968). New considerations on the Vaiont slide. Rock Mechanics & Engineering Geology.
    26. Porterfield, J. A., Cotton, D. M., & Byrne, R. J. (1994). Soil nailing field inspectors manual-soil nail walls (No. FHWA-SA-93-068). United States. Federal Highway Administration. Office of Technology Applications.
    27. Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, pp. 11-33.
    28. Wyllie, D. C., & Mah, C. (2004). Rock slope engineering. CRC PressLondon and New York, pp. 200-216.

    QR CODE
    :::