跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳志維
Chih-Wei Chen
論文名稱: 模擬注流式生物反應器之流場及細胞生長
Modeling of Media Flow And Engineered Cartilage Growth in a Perfusion Bioreactor
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 119
中文關鍵詞: 生物反應器軟骨細胞支架
外文關鍵詞: modeling, chondrocytes, perfusion, scaffold, fluid shear stress
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 注流式生物反應器系統的發展是為了改善體外培養時質量傳輸到三維組織工程支架的問題。除了促進養分和代謝產物的交換外,此系統同時提供了種植在支架內的細胞流體剪應力的作用。本文建立注流式系統的數學模型來說明並預測軟骨細胞在多孔性聚合物支架的增生和移動,以及養分消耗和新陳代謝產物生成的行為。包含了改良的Contois細胞生長模型,其中養分的飽和、代謝產物抑制描述了細胞在支架上的增生。並利用靜態培養時支架四周養分充足的極端例子,來瞭解養分和代謝產物的質量傳輸對系統的影響。結果顯示靜態培養模擬和實驗比較可以證實養分和代謝產物僅依靠擴散作用來傳輸的話,細胞必然會集中增生於支架外圍處。而在有注流影響下所得到的細胞平均總量會比靜態培養來的多,在空間的分布也較為均勻,且隨著對流速度的增加而更明顯,但最後會趨向一漸進值。在流量0.0024 cm^3/s的條件下,支架處的平均流體剪應力約為0.06 mPa (6e-4 dyne/cm^2),和文獻的結果相比是類似的。細胞具有的隨機漫步行為會影響細胞在培養時的數量上的多寡,且隨著隨機漫步速度增加則細胞分布的更加均勻,而其他物理參數的定性分析,以及細胞初始不均勻種植和改變管徑大小對於注流系統的影響也會在文中加以討論。


    Perfusion bioreactor systems have been developed to improve mass transport throughout three-dimensional tissue-engineered scaffolds cultured in vitro. In addition to enhancing the exchange of nutrients depletion and product accumulation, these systems simultaneously deliver flow-mediated shear stresses to cells seeded within the constructs. In this work, a computational model explaining, as well as predicting, cell proliferation and random walk within the porous scaffold, nutrients consumption and product accumulation, is developed. It incorporates a modified Contois cell-growth model that includes the effects of nutrient saturation, competitive product inhibition to describe the scaffold–cell system. To assess the extent to which mass transfer can be influenced theoretically, extreme cases were distinguished in which the culture medium was assumed fully sufficient in static culture. A comparison between predictions and experimental evidence found in the literature shows that cell-scaffold constructs that rely solely on diffusion for supply of nutrients will inevitably produce proliferation-dominated regions near the outer edge of the scaffold. When the cells are cultured in a scaffold subjected to a perfused velocity field, they penetrate to a greater extent into the scaffold core and give uniform spatial distribution. The amount of cells in the perfusion culture is more than in static culture, and increases with the velocity of perfusion, and it will tend to a constant as the perfusion is intensified. Relating the simulation results to perfusion experiments, an average surface shear stress of 0.06 mPa (6e-4 dyne/cm^2) was found at a flow rate of 0.0024 cm^3/s, and which is similar with other studies. We find the properties of random walks will influence the growth of cells, and it may let cell distribute uniformly when the random walk velocity increases. A parametric analysis is performed and the result is compared qualitatively with previous findings in the literature. Additional cases, where cell nonuniform-seeding and the change of tube diameter can be influential for a perfusion bioreactor system, are also studied.

    中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究動機 3 第二章 數學模型 5 2.1 基本假設與多孔介質概念 5 2.2 描述注流式流場之連續方程式及動量方程式 7 2.3 描述養分和代謝產物之濃度守恆方程式 9 2.4 描述細胞之質量守恆方程式 13 2.5 方程式簡化 16 2.6 無因次方程式與無因次參數定義 17 2.7 無因次化邊界條件 20 2.7.1 無注流情況 20 2.7.2 有注流影響 21 第三章 數值方法 25 3.1 COMSOL簡介 25 3.2 通式 25 3.3 弱解式 26 3.4 網格設計 27 3.4.1 無注流情況 27 3.4.2 有注流影響 27 3.5 誤差與精確度 28 第四章 模擬結果與分析 29 4.1 靜態培養的比較 29 4.2 單層和三層模型的差異 30 4.3 注流的影響 31 4.4 系統參數對注流培養的影響 34 4.4.1 Φ,c0的影響 34 4.4.2 K’pr的影響 35 4.4.3 C的影響 35 4.4.4 Λ的影響 35 4.5 細胞不均勻種植對培養的影響 36 4.5.1 靜態培養 36 4.5.2 注流式培養 36 4.6 改變管徑對培養的影響 37 第五章 結論與未來展望 38 參考文獻 41 附錄 48 附表 53 附圖 58

    Allhands, R.V., Torzilli, P.A., and Kallfelz, F.A., 1983. Measurement of Diffusion of Uncharged Molecules in Articular Cartilage. Cornell Vet. 74: 111-123.
    Bancroft, G.N., Sikavitsas, V.I., van den Dolder, J., Sheffield, T.L., Ambrose, C.G., Jansen, J.A., Mikos, A.G., 2002. Fluid Flow Increases Mineralized Matrix Deposition in 3D Perfusion Culture of Marrow Stromal Osteoblasts in a Dose-Dependent Manner. Proceedings of The National Academy of Sciences USA 99 (20): 12600–12605.
    Bassett, C., Herrmann, I., 1961. Influence of Oxygen Concentration and Mechanical Factors on Differentiation of Connective Tissues in Vitro. Nature 190: 460-461.
    Brown, T.D., 2000. Techniques for Mechanical Stimulation of Cells in Vitro: a review. Journal of Biomechanics 33: 3-14.
    Burstein, D., Gray, M. L., Hartman, A. L., Gipe, R., and Foy, B. D., 1993. Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging. J. Orthop. Res., 11(4): 465–478.
    Bush, P.G. and Hall, A.C., 2001. Regulatory Volume Decrease (RVD) by Isolated and in Situ Bovine Articular Chondrocytes. Journal of Cellular Physiology 187: 304-314.
    Cartmell, S.H., Porter, B.D., Garcia, A.J., Guldberg, R.E., 2003. Effects of Medium Perfusion Rate on Cell-Seeded Three-Dimensional Bone Constructs in Vitro. Tissue Engineering 9 (6): 1197–1203.
    Chang, C., Lauffenburger, D.A., Morales, T.I., 2003. Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. OsteoArthritis and Cartilage 11: 603–612.
    Contois, D.E., 1959. Kinetics of Bacterial Growth: Relationship Between Population Density and Specific Growth Rate of Continuous Cultures. J. Gen. Microbiol. 21: 40-50.
    DiMilla, P.A., Stone, J.A., Quinn, J.A., Albelda, S.M., and Lauffenburger, D.A., 1993. Maximal Migration of Human Smooth Muscle Cells on Fibronectin and Type IV Collagen Occurs at an Intermediate Attachment Strength. The Journal of Cell Biology 122: 729-737.
    Domm, C., , M., Christesen, K., Kurz, B., 2002. Redifferentiation of Dedifferentiated Bovine Articular Chondrocytes in Alginate Culture under Low Oxygen Tension. Osteoarthritis Cartilage 10: 13–22.
    Freed, L.E., Vunjak-Novakovic, G., and Langer, R., 1993. Cultivation of Cell-Polymer Cartilage Implants in Bioreactors. Journal of Cellular Biochemistry 51: 257-264.
    Freed, L.E., Vunjak-Novakovic, G., Marquis, J.C., and Langer R. 1994. Kinetics of Chondrocyte Growth in Cell-Polymer Implants. Biotechnology and Bioengineering 43: 597-604
    Galban, C.J., and Locke, B.R., 1999a. Analysis of Cell Growth Kinetics and Substrate Diffusion in a Polymer Scaffold. Biotechnology and Bioengineering 65(2): 121-132.
    Galban, C.J., and Locke, B.R., 1999b. Effects of Spatial Variation of Cells and Nutrient and Product Concentrations Coupled with Product Inhibition on Cell Growth in a Polymer Scaffold. Biotechnology and Bioengineering 64(6): 633-643.
    Glowacki, J., Mizuno, S., Greenberger, J.S., 1998. Perfusion Enhances Functions of Bone Marrow Stromal Cells in Three-Dimensional culture. Cell Transplantation 7 (3): 319–326.
    Hansen, U., , M., Domm, C., Ioannidis, N., Hassenpflug, J., Gehrke, T., Kurz, B., 2001. Combination of Reduced Oxygen Tension and Intermittent Hydrostatic Pressure: A Useful Tool in Articular Cartilage Tissue Engineering. J. Biomech. 34: 941–949.
    Hillsley, M.V., Frangos, J.A., 1997. Alkaline Phosphatase in Osteoblasts is Down-Regulated by Pulsatile Fluid Flow. Calcified Tissue International 60 (1): 48–53.
    Holm, S., Maroudas, A., Urban, J. P. G., Selstam, G., and Nachemson, A., 1981. Nutrition of The Intervertebral Disc: Solute Transport and Metabolism. Connect. Tissue Res. 8: 101–119.
    Jiang, G.L., White, C.R., Stevens, H.Y., Frangos, J.A., 2002. Temporal Gradients in Shear Stimulate Osteoblastic Proliferation via ERK 1/2 and Retinoblastoma Protein. American Journal of Physiology, Endocrinology and Metabolism 283 (2): E383–E389.
    Klein-Nulend, J., Helfrich, M.H., Sterck, J.G., MacPherson, H., Joldersma, M., Ralston, S.H., Semeins, C.M., Burger, E.H., 1998. Nitric Oxide Response to Shear Stress by Human Bone Cell Cultures is Endothelial Nitric Oxide Synthase Dependent. Biochemical and Biophysical Research Communications 250 (1): 108–114.
    Langer, R., Vacanti, J.P., 1993. Tissue engineering. Science 260(5110): 920-926.
    Lee, R.B., and Urban, J.P.G., 2002. Functional Replacement of Oxygen by Other Oxidants in Articular Cartilage. Arthritis Rheum 46(12): 3190–3200.
    Lee, R.B., and Urban, J.P.G., 1997. Evidence for a Negative Pasteur Effect in Articular Cartilage. Biochem. J. 321: 95–102.
    Lewis, M.C., MacArthur, B.D., Malda J., Pettet G., Please C.P., 2004. Heterogeneous Proliferation Within Engineered Cartilaginous Tissue: The Role of Oxygen Tension. Biotechnol. Bioeng. 91(5): 607–615.
    Mahmoudifar, N., Doran, P.M., 2005. Tissue Engineering of Human Cartilage in Bioreactor Using Single and Composite Cell-Seeded Scaffolds. Biotechnol. Bioeng. 91(3): 338–355.
    Malda, J., Martens, D.E., Tramper, J., van Blitterswijk, C.A., Riesle, J., 2003. Cartilage Tissue Engineering: Controversy in the Effect of Oxygen. Crit. Rev. Biotechnol. 23: 175–194.
    Marcus, R.E., 1973. The Effects of Low Concentration on Growth, Glycolysis, and Sulfate Incorporation by Articular Chondrocytes in Monolayer Culture. Arthritis Rheum 16: 646–656.
    Maroudas, A., 1975. Biophysical Chemistry of Cartilaginous Tissues with Special Reference to Solute and Fluid Transport. Biorheology 12: 233–248.
    Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G., and Freed, L.E., 2001. Enhanced Cartilage Tissue Engineering by Sequential Exposure of Chondrocytes to FGF-2 During 2D Expansion and BMP-2 During 3D Cultivation. Journal of Cellular Biochemistry 83: 121-128.
    Maxwell, J.C., 1891. A Treatise on Electricity and Magnetism, 3rd ed. (Reproduction of Claridon Press imprint.) New York: Dover Publications.
    McAllister, T.N., Du, T., Frangos, J.A., 2000. Fluid Shear Stress Stimulates Prostaglandin and Nitric Oxide Release in Bone Marrowderived Preosteoclast-Like Cells. Biochemical and Biophysical Research Communications 270 (2): 643–648.
    Murphy, C.L., Polak, J.M., 2004. Control of Human Articular Chondrocyte Differentiation by Reduced Oxygen Tension. J. Cell Physiol. 199: 451–459.
    Nield, D.A., and Bejan, A, 1992. Convection in Porous Media, Springer-Verlag, New York.
    Obradovic, B., Carrier, R.L., Vunjak-Novakovic, G., Freed, L.E., 1999. Gas Exchange is Essential for Bioreactor Cultivation of Tissue Engineered Cartilage. Biotechnology and Bioengineering 63(2): 197-205.
    Obradovic, B., Meldon, J.H., Freed, L.E., Vunjak-Novakovic, G., 2000. Glycosaminoglycan Deposition in Engineered Cartilage: Experiments and Mathematical Model. AIChE Journal 46(9): 1860-1871.
    Pazzano, D., Mercier, K.A., Moran, J.M., Fong, S.S., DiBiasio, D.D., Rulfs, J.X., Kohles, S.S., and Bonassar, L.J., 2000. Comparison of Chondrogensis in Static and Perfused Bioreactor Culture. Biotechnol. Prog. 16(5): 893-896.
    Porter, B., Zauel, R., Stockman, H., Guldberg, R., Fyhrie, D., 2005. 3-D Computational Modeling of Media Flow Through Scaffolds in a Perfusion Bioreactor. Journal of Biomechanics 38: 543–549
    Reich, K.M., Frangos, J.A., 1991. Effect of Flow on Prostaglandin E2 and Inositol Trisphosphate Levels in Osteoblasts. American Journal of Physiology 261 (3 Pt 1): C428–C432.
    Saini, S., and Wick, T.M., 2004. Effect of Low Oxygen Tension on Tissue-Engineered Cartilage Construct Development in the Concentric Cylinder Bioreactor. Tissue Eng. 10: 825–832.
    Sengers, B.G., Heywood, H.K., Lee, D.A., Oomens, C.W.J., Bader, D.L., 2005a. Nutrient Utilization by Bovine Articular Chondrocytes: A Combined Experimental and Theoretical Approach. Journal of Biomechanical Engineering 127: 758-766.
    Sengers, B.G., van Donkelaar, C.C., Oomens, C.W.J. and Baaijens, F.P.T., 2005b. Computational Study of Culture Conditions and Nutrient Supply in Cartilage Tissue Engineering. Biotechnol. Prog. 21: 1252-1261.
    Shah, R.K., London, A.L., 1978. Laminar Flow Forced Convection in Ducts, Academic, New York.
    Shreiber, D.I., Barocas, V.H., and Tranquillo, R.T., 2003. Temporal Variations in Cell Migration and Traction during Fibroblast-Mediated Gel Compaction. Biophysical Journal 84: 4102–4114.
    Smalt, R., Mitchell, F.T., Howard, R.L., Chambers, T.J., 1997. Induction of NO and Prostaglandin E2 in Osteoblasts by Wall-Shear Stress but Not Mechanical
    Strain. American Journal of Physiology 273 (4 Pt 1): E751–E758.
    Sucosky, P., Osorio, D.F., Brown, J.B., Neitzel, G.P., 2003. Fluid Mechanics of a Spinner-Flask Bioreactor. Biotechnology and Bioengineering 85(1): 34-46.
    Tomita, M., Sato, E.F., Nishikawa, M., Yamano, Y., and Inoue, M., 2001. Nitric Oxide Regulates Mitochondrial Respiration and Functions of Articular Chondrocytes. Arthritis Rheum. 44(1): 96–104.
    Torzilli, P.A., Askari, E., and Jenkins, J.T., 1990. Water Content and Solute Diffusion Properties in Articular Cartilage. Biomechanics of Diarthrodial
    Joints, V.C. Mow, A. Ratcliffe, and S.L.-Y. Woo, eds., Springer, New York: 363–390.
    Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P.M., Langer, R.,
    Freed, L.E., 1998. Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. Biotechnol Prog 14: 193–202.
    Wang, S., Tarbell, J.M., 1995. Modeling Interstitial Flow in an Artery Wall Allows Estimation of Wall Shear Stress on Smooth Muscle Cells. J. Biomech. Eng. 117: 358–463.
    Wang, S., Tarbell, J.M., 2000. Effect of Fluid Flow on Smooth Muscle Cells in a 3-Dimensional Collagen Gel Model. Arterioscler Thromb Vasc. Biol. 2220–2225.
    Wendt, D., Marsano, A., Jakob, M., Heberer, M., Martin, I., 2003. Oscillating Perfusion of Cell Suspensions Through Three -Dimensional Scaffolds Enhances Cell Seeding Efficiency and Uniformity. Biotechnology and Bioengineering 84: 205-214.
    Windhaber, R.A.J., Wilkins, R.J., and Meredith, D., 2003. Functional Characterisation of Glucose Transport in Bovine Articular Chondrocytes. Pfluegers Arch. 446: 572–577.
    Wood, B.D., Quintard, M., Whitaker, S., 2002. Caculation of Effective Diffusivities for Biofilms and Tissues. Biotechnology and Bioengineering 77: 495-516.
    陳佳柏, 2005. 模擬注流式生物反應器之細胞培養研究. 國立中央大學機械工程研究所碩士論文.
    楊政瑋, 2005. 細胞在組織工程支架之生長與遷移. 國立中央大學機械工程研究所碩士論文.

    QR CODE
    :::