跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭建堯
Chien-Yao Hsiao
論文名稱: 應用於可見光通訊之OFDM接收機設計與實現
Design and Implementation of the OFDM Receiver for Visible-Light Communication System
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 可見光通訊系統正交分頻多工
外文關鍵詞: VLC System, OFDM
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可見光通訊技術 (Visible Light Communication, VLC)是目前正在發展中的一種利用可見光調變的通訊技術。具有高安全性與高速資料傳輸的特性,能夠應用在對高頻電磁波敏感之環境中,例如醫院病房中生理觀測儀器的資料傳輸,並防止干擾微弱生理訊號的測量。儘管未來將扮演照明主流的LED具有高頻寬以及快速脈衝響應的特性,然而由於傳輸環境與元件本身的雜訊干擾,以及依據傳輸距離遞增的通道衰減。將使得實際資料在傳輸時遭遇非理想的通道效應而與理想情況有一定誤差。因此在解決VLC系統中之通道衰減以及抵抗雜訊干擾以提升傳輸效率,將會是本論文之研究重點。
    本論文針對VLC系統特性設計一套利用OFDM調變之規格,並以此規格設計VLC系統之OFDM基頻接收機。此接收機包含了時域頻域轉換、同步與等化的功能。同步功能包含有OFDM符碼邊界偏移估測和取樣時脈偏移估測與補償。等化部分包含通道效應估測與頻域等化器的資料回復。在本論文中將針對上述問題提出解決方法,使用Matlab與C語言建立系統模擬平台。電路部分以Verilog HDL描述,並使用TSMC-90nm製程來實現所設計之電路,以驗證電路設計的功能正確性。


    Visible light communication (VLC) system is a technique which is being developed in modern. It utilizes the visible light to moderate for communication. The advantages of VLC are not only high speed transmission capability and the high security, but also can avoid high-frequency electromagnetic interference when transmitting data. For examples, the transmission of medical equipment in the hospital, it can prevent the interference of the bio-signal measurement. Although the LED with wide bandwidth and high-speed pulse response is the mainstream in the future, the noise of the transmission environment, the devices and the channel attenuation which is according to the transmission distance will cause the error during transmission. Therefore, how to solve the problems of channel attenuation and noise interference for transmission efficiency in VLC system is an important and crucial issue in my research.
    We proposed the specification which utilizes the orthogonal frequency division multiplexing (OFDM) to modulate and use this to design the OFDM receiver in baseband of VLC system. This receiver including functions of time-domain transfers to frequency-domain, synchronous, and equalization. The synchronous function comprises symbol boundary detection, the estimation of sampling clock offset and compensate. The equalization includes channel effect detection and data recovering of frequency-domain equalizer. Thus, we proposed a new method to solve the problems that we mentioned. We established the simulation environment of the system by Matlab and C software, utilized Verilog HDL to finish the circuit, and realized the proposed in TSMC-90nm to verify the performance.

    摘要 i Abstract v 目錄 vii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 前言與研究動機 1 1.2 論文架構 2 第二章 VLC標準和系統架構 3 2.1 訊號調變 3 2.1.1 開關控制鍵調變 3 2.1.2 脈衝寬度調變 4 2.1.3 脈衝位置調變 4 2.1.4 脈衝振幅調變 5 2.1.5 正交分頻多工調變 6 2.2 系統架構 7 2.3 可見光通訊系統規格 10 2.3.1 循環字首 10 2.3.2 參考信號 11 2.3.3 反轉快速傅利葉轉換調變方法 12 第三章 VLC同步與等化架構 14 3.1 符碼邊界同步 14 3.1.1 符碼邊界偏移效應 14 3.1.2 符碼邊界偏移估測 16 3.2 取樣時脈偏移同步 17 3.2.1 取樣時脈偏移效應 18 3.2.2 取樣時脈偏移估測 20 3.2.3 取樣時脈偏移補償 21 3.3 LMS頻域等化器 27 3.3.1 直角座標系LMS頻域等化器 28 3.3.2 極座標系LMS頻域等化器 30 3.3.3 指數型增益和相角LMS頻域等化器 33 第四章 頻域等化器架構設計 37 4.1 通道估測 37 4.2 座標軸旋轉數位計算器 38 4.2.1 原理說明 38 4.2.2 向量模式(Vectoring Mode) 40 4.2.3 旋轉模式(Rotation Mode) 41 4.3 自動增益控制與載波回覆頻域等化器 42 第五章 VLC系統模擬與結果 46 5.1 模擬環境 46 5.2 取樣時脈偏移與補償模擬結果 48 5.3 星座圖模擬結果 49 5.4 模擬結果與電路比較 50 5.4.1 定點數分析 50 第六章 結論與未來展望 55 參考文獻 56

    [1] D. Matiae, “OFDM as a possible modulation technique for multimedia application in the range of mm wave,” TUD-TVS, Oct. 1998
    [2] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” in Proc. IEEE International Conference on ICASSP, vol. 5, April, 1980, pp. 964-967.
    [3] Thierry Pollet and Miguel Peeters, Alcatel, “Synchronization with DMT Modulation,” IEEE Communications Magazine April 1999.
    [4] Kwonhyung Lee and Hyuncheol Park, “Channel Model and Modulation Schemes for Visible Light Communications,” IEEE Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium, 7-10 Aug. 2011.
    [5] Michael Speth, Stefan A. Fechtel, Gunnar Fock, and Heinrich Meyr, “Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM—Part I,” IEEE Transactions on Communications, Vol.47, no. 11, November 1999.
    [6] Floyd M. Gardner, “Interpolation in Digital Modems – Part II: Implementation and Performance,” IEEE Transactions on communications VOL. 41, NO. 6, June 1993.
    [7] Floyd M. Gardner, “Interpolation in Digital Modems – Part II: Implementation and Performance,” IEEE Transactions on communications VOL. 41, NO. 6, June 1993.
    [8] C. Richard Johnson Jr., William A. Setharess, “Telecommunication Breakdown,” Prentice Hall, Upper Saddle River, New Jersey, 2004.
    [9] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers,” Andraka Consulting Group, Inc, North Kingstown, 1998.
    [10] 陳右昀, “應用於PLC系統之AGC-CR通道等化技術,” 中央大學, 電機工程學系碩士論文, 2008.
    [11] P. B. Denyer and D. Renshaw, “VLSI Signal Processing; A Bit-Serial Approach,” Addison-Wesley Longman Publishing Co., Boston, MA, USA, 1985.
    [12] Xie Zhang, Kaiyun Cui, Minyu Yao, Hongming Zhang, Zhengyuan Xu, “Experimental Characterization of Indoor Visible Light Communication Channels,” Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, 2012.
    [13] Chih-Feng Wu, Muh-Tian Shiue, Chrong-Kuang Wang, “DHT-Based Frequency-Domain Equalizer for DMT Systems,” 13th European Signal Processing Conference, September 4-8, 2005 Antalya, EUSIPCO 2005.
    [14] Ching-Yuan Yang and Yu Lee, “A PWM and PAM signaling hybrid technology for serial-link Transceivers,” IEEE Transaction Instrumentation and Measurement (USA), 57, 1058–1070.
    [15] H. Elgala , R. Mesleh , H. Haas and B. Pricope, “OFDM Visible Light Wireless Communication Based on White LEDs,” Proc. of the 64th IEEE Vehicular Technology Conference (VTC), pp.2185 -2189 2007
    [16] J.-H. Choi, E.-B. Cho, T.-G. Kang, and C. G. Lee, “Pulse width modulation based signal format for visible light communications,” Technical Digest of 15th Optoelectronics and Communications Conference (OECC 2010), Sapporo, Japan, pp. 276-277, 2010.
    [17] M. Z. Afgani , H. Haas , H. Elgala and D. Knipp, “Visible light communication using OFDM,” Proc. IEEE 2nd Int. Conf. Testbeds Res. Infrastructures Develop. Netw. Communities, pp.129 -134 2006.
    [18] T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lightings,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp.100 -107 2004.
    [19] Y. Tanaka , T. Komine, S. Haruyama and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” Proc. 12th IEEE Int. Symp. Pers. Indoor Mobile Radio Commun., vol. 2, pp.81 -85 2001.
    [20] J. R. Barry, “Wireless Infrared Communications,” Kluwer Academic Publishers, 1994.
    [21] H. Park and J. R. Barry, “Modulation analysis for wireless infrared communications,” Proc. IEEE Int. Conf. Communications, Seattle, WA, Jun. 1995.
    [22] 陳培炘, “利用實數運算核心之哈特萊轉換OFDM調變/解調變器,” 中央大學, 電機工程學系碩士論文, 2008.
    [23] Thierry Pollet and Miguel Peeters, Alcatel, “Synchronization with DMT Modulation,” IEEE Communications Magazine April 1999.
    [24] J. Grubor , S. Randel , K. D. Langer and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightw. Technol., vol. 26, no. 24, pp.3883 -3892 2008.
    [25] T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wireless Commun., vol. 8, no. 6, Jun. 2009.
    [26] G. A. Mahdiraji and E. Zahedi, “Comparison of selected digital modulation schemes (OOK, PPM and DPIM) for wireless optical communications,” in SCOReD Conference, June 2006, pp. 5-10, Selangor, Malaysia.
    [27] Rakhi Thakur, Kavita Khare et al, “Frame Detection For Synchronization In OFDM,” International Journal of Engineering Science and Technology (IJEST) Vol. 3 No. 7 July 2011pp 5955-5957.

    QR CODE
    :::