| 研究生: |
陳毅山 I-Shan Chen |
|---|---|
| 論文名稱: |
毫米波寬頻高增益晶片型整流天線/主動式整合天線發射器暨濾波器之研製 Millimeter-wave Broadband and High Gain On-Chip Rectifying Antenna / Active-Integrated Antenna Transmitter and Filter Design |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 晶片天線 、主動式天線 、有限接地共平面波導 、單晶微波積體電路 、互補金屬氧化物半導體 、壓控整合天線振盪器 、擬態高速移動電子電晶體 |
| 外文關鍵詞: | finite-width ground coplanar waveguide, active-integrated antennas, CMOS, voltage-controlled integrated antenna oscillator, monolithic-microwave integrated circuit, pHEMT, On-chip antenna, millimeter-wave |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究方向著重於發展毫米波V頻段寬頻與高增益晶片式天線、整流天線、主動式整合天線及濾波器。這些晶片式天線及濾波器使用砷化鎵與金氧半導體製程來製作,同時可運作於無線個人區域網路(WPAN)、高解析度多媒體介面(HDMI)及無線功率傳輸(WPT)應用。為解決天線整合於有損高介質晶片基板上而無法獲得高天線增益的問題,在本論文中,設計新型改良天線改善了天線輻射場形,同時也獲得到良好的頻寬及天線增益。所提出的設計方法及步驟藉由實作電路與結果分析做相互驗證,皆獲得吻合的成果。本論文設計側邊輻射之晶片天線與國際指標相比較,在天線頻寬、增益、場形前後波瓣比及面積特性上均有最佳的表現,在天線量測驗證上除了一般量測S參數、天線傳輸增益外,更創新建立精確的晶片天線量測平台,其量測包含絕對增益及場形的量測,其高精度絕對增益量測使用三組天線量測方式,可有效扣除天線口徑因子的不確定因素,同時更提升小型化晶片天線量測上的可信度。
一個V頻段創新晶片式偶極天線晶片小型面積達到 0.9 平方毫米。其電壓駐波比為2的頻寬為24 % (55-70 GHz)、一對同樣天線在距離5公分的傳輸增益為-32 dB、天線絕對增益為3.6dBi、場形前後波瓣比為12 dB、電場及磁場平面的半功率波束寬皆為60度。一個高效率雙頻段(35及94 GHz)晶片型整流天線小型面積達到 2.9 平方毫米。電壓駐波比為2的頻寬分別為82 %及41 %、天線增益在35及94 GHz個別為7.4dBi及6.5dBi,其量測的功率轉換效率為53 %及37 %,且天線的輻射功率密度達到30 mW/cm2。此外,一個主動式晶片整合天線小型面積達到 0.61 平方毫米。其高天線增益為7.6 dBi、低相位雜訊在10 MHz的位移為-114 dBc/Hz、且功率消耗僅有9 mW、其中壓控震盪器的優化指數在10 MHz的位移為-181 dBc/Hz、發射器距離接收天線90公分的接收功率為-38dBm。最後,兩個有限地共平面波導低通及帶通濾波器晶片小型面積達到 0.19 平方毫米。其低穿透損耗分別低於0.5 dB及1.5 dB且反射損耗分別大於12 dB及13 dB。此低通及帶通濾波器的1-dB寬頻個別達到70 GHz (0-70 GHz) 與 11 GHz (55-66 GHz)。在低通濾波器95-120 GHz的止帶頻率95-120 GHz至少有大於 20 dB的抑制,另外,帶通濾波器在0-42 GHz 及82-120 GHz也有大於 20 dB的抑制。
The purpose of this dissertation is to develop millimeter-wave (MMW) broadband and high gain on-chip antennas, rectifying antenna (rectenna), active-integrated antenna (AIA), and filters in V-band. The antennas and filters are fabricated in standard gallium arsenide (GaAs) and complementary metal-oxide semiconductor (CMOS) technologies and operated for wireless personal area network (WPAN), high-definition multimedia interface (HDMI), and wireless power transmission (WPT) applications. The improved techniques of antenna radiation pattern are demonstrated in this dissertation. The design procedures for these on-chip antennas are verified by practical implementation. The measured results are well agreed with the designs and simulations. Compare with the previous on-chip antennas; the proposed antenna provides endfire radiation patterns with high front-to-back ratio, and demonstrates the better bandwidth and gain performance. The antenna performance is characterized by using S-parameter, two-antenna (identical), three-antenna, and radiation pattern measurement methods for return loss, transmission gain, absolute gain, and radiation patterns. Here, to minimize these uncertainties, a three-antenna measurement technique is employed to obtain the antenna absolute gain of the on-chip antenna. The use of three-antenna method completely eliminates the need of unknown parameter, such as effective aperture, in two-antenna method; therefore, the antenna absolute gain can be accurately measured.
A V-band on-chip dipole-based antenna achieves a compact area of 0.9 mm2, a fractional bandwidth of 24 % (55 to 70 GHz, voltage standing wave ratio (VSWR) = 2), a transmission gain of -32 dB (the separated distance R = 5 cm), an absolute gain of 3.6 dBi, a front-to-back ratio of 12 dB, and an half-power beamwidth of 60° in E-plane and H-plane. A high-efficiency dual-band (35/94 GHz) on-chip rectenna presents a fractional bandwidth of 82 % and 41 % (VSWR=2), an antenna gain of 7.4 dBi and 6.5 dBi at the frequencies of 35 GHz and 94 GHz, respectively. The measured power conversion efficiencies (PCEs) are 53 % and 37 % in free space at 35 GHz and 94 GHz, while the incident radiation power density is 30 mW/cm2. The fabricated rectenna occupies a compact area of 2.9 mm2. An on-chip integrated antenna oscillator transmitter performs a high antenna gain of 7.6 dBi and a low phase noise of -114 dBc/Hz at 10 MHz offset at 9 mW power consumption. The figure of merit (FOM) of the voltage controlled oscillator (VCO) is -181 dBc/Hz at 10 MHz offset. The measured receiver power is -38 dBm at separated distance of 90 cm at 66 GHz. The fabricated oscillator-transmitter occupies a compact area of 0.61 mm2. Furthermore, compact on-chip finite-width ground coplanar waveguide (FGCPW) lowpass filter (LPF) and bandpass filter (BPF) demonstrate insertion losses smaller than 0.5 dB and 1.5 dB with return losses of better than 12 dB and 13 dB, respectively. The 1-dB bandwidths of the lowpass filter and bandpass filter are 70 GHz (0-70 GHz) and 11 GHz (55-66 GHz), respectively. The stopband rejections are better than 20 dB from 95 to 120 GHz in the lowpass filter, and from 0 to 42 GHz and 82 to 120 GHz in the bandpass filter. The chip area is very compact of 0.43 × 0.45 mm2.
[1] H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, “Shortening ratios of modified dipole antennas,” IEEE Trans. Antennas Propag., vol. 32, no. 4, pp. 385-386, Apr. 1984.
[2] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, Inc., New York, 2001.
[3] Y. Qian and T. Itoh, “A broadband uniplanar microstrip to coplanar strip transition,” in Asia-Pacific Microwave Conf. (APMC)Dig., Dec. 1997, pp. 609-612.
[4] G. Forma and J. Laheurte, “Compact oscillating slot loop antenna with conductor backing,” Electronics Lett., vol. 32, no. 18, pp. 1633-1635, Aug. 1997.
[5] E. Ojefors, E. Sonmez, S. Chartier, P. Lindberg, C. Schick, A. Rydberg, “Monolithic integration of a folded dipole antenna with a 24-GHz receiver in SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1467-1475, Sep. 2007.
[6] N. Behdad, D. Shi, W. Hong, K. Sarabandi, and M. P. Flynn, “A 0.3 mm2 miniaturized X-band on-chip slot antenna in 0.13 μm CMOS,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., 2007, pp. 441-444.
[7] K. T. Chan, A. Chin, Y. B. Chen, Y. D. Lin, and W. J. Lin, “Integrated antennas on Si, proton-implanted Si and Si-on-quartz,” in IEEE International Electron Devices Meeting, 2001, pp. 903-906.
[8] K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johansson, “Endfire tapered slot antennas on dielectric substrates,” IEEE Tran. Antennas Propag., vol. 33, no. 12, 1392-1400, Dec. 1985.
[9] F. Lin; J. Brinkhoff, K. Kai, D. D. Pham, and X. Yuan, “A low power 60 GHz OOK transceiver system in 90 nm CMOS with innovative on-chip AMC antenna,” in IEEE Asian Solid-State Circuits conf. (A-SSCC), Nov. 2009, pp. 349-352.
[10] R. N. Simons and R. Q. Lee, “On-wafer characterization of millimeter-wave antennas for wireless application,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92-96, Jan. 1999.
[11] K. K. Samanta, D. Stephens, and I. D. Robertson, “60 GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter,” IET Electronics Lett., vol. 42, no. 12, pp. 701-702, Jun. 2006.
[12] I. J. Chen, H. Wang, and P. Hsu, “A V-band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front end,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 12, pp. 2461-2468, Dec. 2003.
[13] C. Kärnfelt, P. Hallbjörner, H. Zirath, and A. Alping, “High gain active microstrip antenna for 60 GHz WLAN/WPAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2593-2603, Jun. 2006.
[14] W. Choi, C. Cheon, and Y. Kwon, “A V-band MMIC self oscillating mixer active integrated antenna using a push-pull patch antenna,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp. 630-633.
[15] G. Passiopoulos, S. Nam, A. Georgiou, A. E. Ashtiani , I. D. Robertson, and E.A. Grindrod, “V-band single chip, direct carrier BPSK modulation transmitter with integrated patch antenna,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., Jun. 1998, pp. 231-234.
[16] J. Dixon, G. O’Dell, J. Schoenberg, S. Duncan, and Z. Popovic, “60 GHz monolithic active antenna array,” in IEEE AP-S Int. Symp. Dig., Jul. 1997, pp. 38-41.
[17] A. Boe, M. Fryziel, N. Deparis, C. Loyez, N. Rolland, and P. A. Rolland, “Smart antenna based on RF MEMS switches and printed Yagi-Uda antennas for 60 GHz ad hoc WPAN, ” in 36th European Int. Microwave Conf., Sep. 2006, pp. 310-313.
[18] D. Neculoiu, G. Konstantinidis, L. Bary, D. Vasilache, A. Stavrinidis, Z. Hazopulos, A. Pantazis, R. Plana, and A. Muller, “Yagi-Uda antennas fabricated on thin GaAs membrane for millimeter wave applications, ” in IEEE Int. Workshop Antenna Technology: Small Antennas and Novel Metamaterials, IWAT, pp. 418-421, Mar. 2005.
[19] Y. P. Zhang, L. H. Guo, and M. Sun, “High transmission gain inverted-F antenna on low-resistivity Si for wireless interconnect, ” IEEE Electron Device Lett., vol. 27, no. 5, pp. 374-376, May 2006.
[20] Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip antennas for 60-GHz radios in silicon technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
[21] S. S. Hsu, K. C. Wei, C. Y. Hsu, and R. C. Huey, “A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18 ?m CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 625-627, Jun. 2008.
[22] B. H. Strassner and K. Chang, “Rectifying antennas (rectennas),” in Encyclopedia of RF and Microwave Engineering. Hoboken, NJ: Wiley, 2005, vol. 5, pp. 4418-4428.
[23] Y. H. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 7, pp. 1784-1789, Jul. 2002.
[24] Y. J. Ren and K. Chang, “5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1495-1502, Jun. 2006.
[25] B. Strassner and K. Chang, “5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1548-1553, May. 2003.
[26] Y. J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol.54, no. 7, pp. 2970-2976, Jul. 2006.
[27] Y. Pinhasi, I. M. Yakover, A. L. Eichenbaum, and A. Gover, “Efficient electrostatic-accelerator free-electron masers for atmospheric power beaming,” IEEE Trans. Plasma Science, vol. 24, no. 3, pp. 1050-1057, Jun. 1996.
[28] P. Koert and J. T. Cha, “Millimeter wave technology for space power beaming,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp. 1251-1258, Jun. 1992.
[29] T. W. Yoo and K. Chang, “Theoretical and experimental development of 10 and 35 GHz rectennas,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp. 1259-1266, Jun. 1992.
[30] J. O. McSpadden, T. Yoo, and K. Chang, “Theoretical and experimental investigation of a rectenna element for microwave power transmission,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 2359-2366, Dec. 1992.
[31] Y. J. Ren, M. Y. Li, and K. Chang, “35 GHz rectifying antenna for wireless power transmission,” IET Electronics Lett., vol. 43, no. 11, pp. 602-603, May. 2007.
[32] K. K. O, M. C. F. Chang, M. Shur, and W. Knap, “Sub-millimeter wave signal generation and detection in CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2009, pp. 185-188.
[33] M. Pons, F. Touati, and P. Senn, “Study of on-chip integrated antennas using standard silicon technology for short distance communications,” in European Int. Microwave conf. Dig., Oct. 2005, vol. 3.
[34] J. Shi, J.-X. Chen, and Q. Xue, “A differential voltage-controlled integrated antenna oscillator based on double-sided parallel-strip line,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2207-2212, Oct. 2008.
[35] D. H. Choi and S. O. Park, “A varactor-tuned active integrated antenna using slot antenna,” IEEE Antenna and Wireless propag. Lett., vol. 4, pp. 191-193, Apr. 2005.
[36] A. Shamin, M. Arsalan, L. Roy, M. Shams, and G. Tarr, “Wireless dosimeter: system-on-chip versus system-in-package for biomedical and space applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 643-647, Jul. 2008.
[37] K. Chang, R. A. York, P. S. Hall, and T. Itoh, “Active integrated antennas,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 937-944, Mar. 2002.
[38] R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1920-1929, Nov. 1998.
[39] M. S. Wu, Y. Z. Chueh, J. C. Yeh, and S. G. Mao, “Synthesis of triple-band and quad-band bandpass filters using lumped-element coplanar waveguide resonators,” Progress In Electromagnetics Research B, vol. 13, pp. 433-451, Feb. 2009.
[40] M. Chen, Y. C. Lin, and M. H. Ho, “Quasi-lumped design of bandpass filter using combined cpw and microstrip,” Progress In Electromagnetics Research Lett., vol. 9, pp. 59-66, Apr. 2009.
[41] A. Ismail, M. S. Razalli, M. A. Mahdi, R. S. A. R. Abdullah, N. K. Noordin, and M. F. A. Rasid, “X-band trisection substrate-integrated waveguide quasi-elliptic filter,” Progress In Electromagnetics Research, vol. 85, pp. 133-145, Aug. 2008.
[42] J. Zhang and T. Y. Hsiang, “Dispersion characteristics of coplanar waveguides at subterahertz frequencies,” Journal of Electromagnetic Waves and Application, vol. 20, no. 10, pp. 1411-1417, Oct. 2006.
[43] J. P. Wang, B. Z. Wang, and W. Shao, “A novel partly shielded finite ground CPW low pass filter,” Journal of Electromagnetic Waves and Application, vol. 19, no. 5, pp. 689-696, May 2005.
[44] B. Yang, E. Skafidas, and R.J. Evans, “Design of 60 GHz millimetre-wave bandpass filter on bulk CMOS,” IET Trans. Microwaves, Antennas Propag., vol. 3, no. 6, pp. 943-949, Sep. 2009.
[45] C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “A 60-GHz millimeter-eave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 246-248, Mar. 2008.
[46] Y. C. Lee, W. I. Chang, and C. S. Park, “Monolithic LTCC SiP transmitter for 60GHz wireless communication terminals,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2005, pp. 1015-1018.
[47] M. G. Lee, T. S. Yun, K. B. Kim, D. H. Shin, T. J. Baet, and J. C. Lee, “Design of millimeter-wave bandpass filters with λg/4 short stubs using GaAs surface micromachining,” in European Int. Microwave conf. Dig., 4-6 Oct. 2005, vol. 2.
[48] FEM-Based Electromagnetic Simulator (HFSS). [Online]. Available: http://www.ansoft.com
[49] MoM-Based Electromagnetic Simulator (Momuntum). [Online]. Available: http://www.home.agilent.com/agilent/home.jspx?cc=US&lc=eng
[50] P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140-147, Jan. 2002.
[51] C. Kärnfelt, P. Hallbjörner, H. Zirath, and A. Alping, “High gain active microstrip antenna for 60 GHz WLAN/WPAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2593-2603, Jun. 2006.
[52] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” in IEEE ISSCC Dig., Nov. 2005, vol. 40, no. 11, pp. 2174-2186.
[53] O. Vaudescal, B. Lefebvre, V. Lehoue, and P. Quentin, “A highly integrated MMIC chipset for 60 GHz broadband wireless applications,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2002, vol. 3, pp. 1729-1732 .
[54] K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, N. Takahashi, and S. Iwanaga, “Wireless 1.25 Gb/s transceiver module at 60 GHz band,” in Proc. IEEE Solid-State Circuits Conf., 2002, pp. 298-299.
[55] C. S. Wang, J. W. Huang, K. D. Chu, and C. K. Wang, “A 60-GHz phased array receiver front-end in 0.13-mm CMOS technology,” IEEE Tran. Solid-State Cir., vol. 56, no. 10, pp. 2341-2352, Oct. 2009
[56] B. A. Floyd, S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher, “SiGe bipolar transceiver circuits operating at 60 GHz,” IEEE Tran. Solid-State Cir., vol. 40, no. 1, pp. 156-167, Jan. 2005.
[57] Y. Chung, C. Y. Hang, S. Cai, Y. Qian, C. P. Wen, K. L. Wang, and T. Itoh, “AlGaN/GaN HFET power amplifier integrated with microstrip antenna for RF front-end applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 653-659, Feb. 2003.
[58] P. Popplewell, V. Karam, A. Shamim, J. Rogers, L. Roy, C. Plett, “A 5.2-GHz BFSK transceiver using injection-locking and an on-chip antenna,” IEEE Tran. Solid-State Cir., vol. 43, no. 4, pp. 981-990, Apr. 2008.
[59] D. Choi and S. Park, “Active integrated antenna using T-shaped microstrip-line-fed slot antenna,” Microw. Opt. Technol. Lett., vol. 48, pp. 367-370, Feb. 2006.
[60] H. R. Chuang, S. W. Kuo, C. C. Lin, and L. C. Kuo, "A 60 GHz millimeter-wave CMOS RFIC on-chip dipole antenna," Microwave Journ., vol. 50, no. 1, pp. 144-146, Jan. 2007.
[61] K. S. Yngvesson, T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg, and J. F. Johansson, “The tapered slot antenna-a new integrated element for millimetre-wave applications,” IEEE Tran. Microw. Theory and Tech., vol. 37, pp. 365-374, Feb. 1989.
[62] R. N. Simons and R. Q. Lee, “Characterization of miniature millimeter-wave Vivaldi antenna for local multipoint distribution service,” in 49th Int. ARFTG Conf. Dig., Jun. 1997, pp. 95-100.
[63] K. K. O, K. Kim, B. A. Floyd, J. L. Mehta, H. Yoon, C. M. Hung, D. Bravo, T. O. Dickson, X. Guo, R. Li, N. Trichy, J. Caserta, W. R. Bomstad, J. Branch, D.-J. Yang, J. Bohorquez, E. Seok, L. Gao, A. Sugavanam, J. J. Lin, J. Chen, and J. E. Brewer, “On-chip antennas in silicon ICs and their application,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1312-1323, Jul. 2005
[64] G. A. EVANS, Antenna Measurement Techniques, Artech House, 1990.
[65] Y. P. Zhang, “Integrated circuit ceramic ball grid array package antenna,” IEEE Trans. Antennas Propag., vol. 52, no. 10, pp. 2538-2544, Oct. 2004.
[66] J. B. Rizk and G. M. Rebeiz, “Millimeter-wave Fermi tapered slot antennas on micromachined silicon substrates,” IEEE Trans. Antennas Propag., vol. 50, no. 3, pp. 379-383, Mar. 2002.
[67] Z. Wang, J. Liu, and L. Liu, “Permittivity measurement of Ba0.5Sr0.5TiO3 ferroelectric thin films on multilayered silicon substrates,” IEEE Trans. Instrumentation and Measure., vol. 55, no. 1, pp. 350-356, Feb. 2006.
[68] A. Ellgardt and A. Wikstrom, “A single polarized triangular grid tapered-slot array antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2599-2607, Sep. 2009.
[69] S. Sugawara, Y. Maita, K. Adachi, K. Mori, and K. Mizuno, “Characteristics of a mm-wave tapered slot antenna with corrugated edges,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1998, pp. 533-536.
[70] K. Hettak, N. Dib, A. F. Sheta, and S. Toutain, “A class of novel uniplanar series resonators and their implementation in original applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 9, pp. 1270-76, Sep. 1998.
[71] K. Hettak, N. Dib, A. Omar, G. Y. Delisle, M. Stubbs, and S. Toutain, “A useful new class of miniature CPW shunt stubs and its impact on millimeter-wave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2340-2049, Dec. 1999.
[72] Y. J. Ren, M. F. Farooqui, and K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp.2110-2113, Jul. 2007.
[73] J. O. McSpadden, F. Lu, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp.2053-2060, Dec. 1998.
[74] T. W. Yoo and K. Chang, “Theoretical and experimental development of 10 and 35 GHz rectennas,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp.1259-1266, Jun. 1992.
[75] J. O. McSpadden, F. Lu, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp.2053-2060, Dec. 1998.
[76] I. S. Chen, H. K. Chiou, and N. W. Chen, “V-Band on-chip dipole-based antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp.2853-2861, Oct. 2009.
[77] B. Strassner and K. Chang, “5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp.1870-1876, Aug. 2002.
[78] Y. H. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 7, pp. 1784-1789, Jul. 2002.
[79] M. Sun, and Y. P. Zhang, “100-GHz Quasi-Yagi antenna in silicon technology,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 455-457, May. 2007.
[80] C. Cao and K. K. O, “Millimeter-Wave voltage-controlled oscillators in 0.13 ?m CMOS technology,” IEEE J. Solid-State Cir., vol. 41, no. 6, pp. 1297-1304, Jun. 2006.
[81] D. D. Kim, J. Kim, J. O. Plouchart, C. Cho, W. Li, D. Lim, R. Trzcinski, M. Kumar, C. Norris, and D. Ahlgren, “A 70 GHz manufacturable complementary LC-VCO with 6.14 GHz tuning range in 65 nm SOI CMOS,” in ISSCC Tech. Dig., Feb. 2007, pp. 540-541.
[82] F. Ellinger, T. Morf, G. V. Buren, C. Kromer, G. Sialm, L. Rodoni, M. Schmatz, and H. Jsckel, “60 GHz VCO with wideband tuning range fabricated on VLSI SOI CMOS technology,” in IEEE MTT-S Int. Dig., Jun. 2004, pp. 1329-1332.
[83] R. Murji and M. J. Deen, “Noise contributors in 7.2 GHz low-power VCO with automatic amplitude control,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., Jun. 2005, pp. 407-410.
[84] H. Wang, “A 9.8 GHz back-gate tuned VCO in 0.35 ?m CMOS,” in ISSCC Tech. Dig., Feb. 1999, pp. 406-407.
[85] A. Shamin, M. Arsalan, L. Roy, M. Shams, and G. Tarr, “Wireless dosimeter: system-on-chip versus system-in-package for biomedical and space applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 467-469, Jul. 2008.
[86] Y. H. Cho, M. D. Tsai, H. Y. Chang, C. C. Chang, and H. Wang, “A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies,” IEEE Radio Frequency integrated Circuits (RFIC) Symp., Jun. 2005, pp. 131-134.
[87] W. K. W. Ali and S. H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates,” in Proc. IEEE AP-S Int. Symp., Jun. 1998, vol. 2, pp. 676-679.
[88] K. Hettak, N. Dib, A. F. Sheta, and S. Toutain, “A class of novel uniplanar series resonators and their implementation in original applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 9, pp. 1270-1276, Sep. 1998.
[89] E. M. Godshalk, “Generation and observation of surface waves on dielectric slabs and coplanar structures,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 923-926.
[90] M. Tsuji, H. Shigesawa, and A. A. Oliner, “New surface-wave-like mode on CPWs of infinite width and its role in explaining the leakage cancellation effect,” in IEEE MTT-S Int. Microwave Symp. Dig., 1992, pp. 495-498.