| 研究生: |
沈煒凱 Wei-kai Shen |
|---|---|
| 論文名稱: |
高電流氮化鎵場效電晶體之直流與動態特性研究 Study of Direct Current and Dynamic Characteristics on High Current GaN Field Effect Transistors |
| 指導教授: | 綦振瀛 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 氮化鎵 、場效電晶體 、閘極絕緣層 、動態電阻 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來環保意識抬頭,綠能產業已成為工業發展趨勢,利用氮化鎵功率元件應用在開關電路中將可大幅降低能源的損耗。本論文主要探討大電流氮化鎵電晶體之製作,及使用不同的閘極絕緣層材料對於單根指叉元件特性的影響。為了實現大電流電晶體元件,實驗中採用多根指叉的光罩設計,在元件總閘極寬度為20 mm、閘極偏壓為0 V、汲極偏壓10 V且pulse width為200 μs時,成功的達成8.3安培的電流特性,且正規化後的開啟電阻為3.6 mΩ-cm2。其動態電阻約為直流電阻的1.67倍。
本實驗亦設計與探討了多種閘極絕緣層材料,分別為二氧化矽、氮化矽和氧化鋁,以及二氧化矽/氧化鋁和氮化矽/氧化鋁的複合式絕緣層結構。發現使用氧化鋁和氮化矽為絕緣層的元件具有較低的開啟電阻為3.4 mΩ-cm2和3.1 mΩ-cm2。但在截止特性方面,惟具有二氧化矽為絕緣層材料的元件崩潰電壓能超過200 V,而其他種元件皆有提早崩潰的現象。此外,不同閘極絕緣層之元件在動態特性上也有不同的表現,藉由C-V量測後可以發現主要由於半-絕接面的深層缺陷能階密度不同所導致。
This thesis focuses on the fabrication of high current GaN transistors and the influence of different gate insulator materials on the single finger devices. In order to achieve high current transistors, this study designed the multi-finger type layout with the total gate width of 20 mm. High current AlGaN/GaN MISFETs grown on 6” Si substrate were successfully demonstrated. When the device is under gate bias of 0 V, drain bias of 10 V and pulse width of 200 μs, the maximum current and specific on-state resistance (Ron) reached 8.3 A and 3.6 mΩ-cm2, respectively. In addition, the measured dynamic Ron is about 1.67 times magnitude of the static Ron.
This study designed a variety of gate insulator materials, including Al2O3、SiO2、Si3N4 and SiO2/Al2O3 composite layer, and found out that the devices with Al2O3 and Si3N4 gate insulator had lower Ron of 3.4 mΩ-cm2 and 3.1 mΩ-cm2. In the off-state characteristics, the devices with SiO2 and SiO2/Al2O3 composite layer have higher breakdown voltage over 200 V, while the other two devices have the problem of early breakdown. In addition, devices with different insulators have different performances on the dynamic Ron. By C-V measurement, the density of deep level trap between insulator and semiconductor could be obtained to analyze the difference of dynamic characteristics.
[1] Yoshitaka Taniyasu, and Makoto Kasu, "Improved Emission Efficiency of 210-nm Deep-ultraviolet Aluminum Nitride Light-emitting Diode," NTT Technical Review, 2010.
[2] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, p. 334, 2000.
[3] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, "AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor," IEEE Electron Device Letters, vol. 21, pp. 63-65, 2000.
[4] Tohru Oka, and Tomohiro Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications," IEEE Electron Device Letters, vol. 29, pp. 668-670, 2008.
[5] Ki-Sik Im, Jong-Bong Ha, Ki-Won Kim, Jong-Sub Lee, Dong-Seok Kim,
Sung-Ho Hahm, and Jung-Hee Lee, "Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate," IEEE Electron Device Letters, vol. 31, pp. 192-194, 2010.
[6] Mi-Kyung Kwon, Ki-Won Kim, Sung-Dal Jung, Dong-Seok Kim, Ki-Sik Im, Hee-Sung Kang, Chul-Ho Won, Ryun-Hwi Kim, Kyu-Il Jang and Jung-Hee Lee, "Effect of Al2O3 Gate Insulator Thickness on Characteristics of Normally-off GaN MOSFETs," Journal of Photonic Science and Technology, vol. 2, pp. 25-28, 2012.
[7] Junxia Shi, Lester F. Eastman, Xiaobin Xin, and Milan Pophristic, "High performance AlGaN/GaN power switch with HfO2 insulation," APPLIED PHYSICS LETTERS, vol. 95, p. 042103, 2009.
[8] Liang Pang, Yaguang Lian, Dong-Seok Kim, Jung-Hee Lee, and Kyekyoon Kim, "AlGaN/GaN MOSHEMT With High-Quality Gate–SiO2 Achieved by Room-Temperature Radio Frequency Magnetron Sputtering," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 59, pp. 2650-2655, 2012.
[9] Li-Hsien Huang, Shu-Hao Yeh, Ching-Ting Lee, Haipeng Tang, Jennifer Bardwell, and James B. Webb, "AlGaN/GaN Metal–Oxide–Semiconductor
High-Electron Mobility Transistors Using Oxide Insulator Grown by Photoelectrochemical Oxidation Method," IEEE Electron Device Letters, vol. 29, pp. 284-286, 2008.
[10] A.Fontserè, A.Pérez-Tomása, P.Godignona, and J.Millán, "High Voltage Low Ron In-situ SiN/Al0.35GaN0.65/GaN on-Si Power HEMTs Operation up to 300 C," Solid-State Device Research Conference, pp. 306-309, 2012.
[11] Taku Sato, Junich Okayasu, Masahiko Takikawa, and Toshi-kazu Suzuki, "AlGaN-GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors With Very High-k Oxynitride TaOxNy Gate Dielectric," IEEE Electron Device Letters, vol. 34, pp. 375-377, 2013
[12] Xinwei Wang, Omair I. Saadat, Bin Xi, Xiabing Lou, Richard J. Molnar, Tomas Palacios, and Roy G. Gordon, "Atomic layer deposition of Sc2O3 for passivating AlGaN/GaN high electron mobility transistor devices," APPLIED
PHYSICS LETTERS, vol. 101, p. 232109, 2012.
[13] A.Fontserèa, A.Pérez-Tomása, V. Banua, P.Godignona, and J.Millán, "A HfO2 based 800V/300oC Au-free AlGaN/GaN-on-Si HEMT Technology," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 37-40, 2012.
[14] Marleen Van Hove, Sanae Boulay, Sandeep R. Bahl, Steve Stoffels, Xuanwu Kang, Dirk Wellekens, Karen Geens, Annelies Delabie, and Stefaan Decoutere, "CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT on Silicon," IEEE Electron Device Letters, vol. 33, pp. 667-669, 2012.
[15] B. De Jaeger, M. Van Hove, D. Wellekens, X. Kang, H. Liang, G. Mannaert, K. Geens, and S. Decoutere, "Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200 mm Si substrates," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 49-52, 2012.
[16] Oliver Hilt, Eldad Bahat-Treidel, Eunjung Cho, Sebastian Singwald and Joachim Würfl, "Impact of Buffer Composition on the Dynamic On-State Resistance of High-Voltage AlGaN/GaN HFETs," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 345-348, 2012.
[17] Donghyun Jin and Jesús A. del Alamo, "Mechanisms responsible for
dynamic ON-resistance in GaN high-voltage HEMTs," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 333-336, 2012.
[18] K.S. Boutros, S. Burnham, D. Wong, K. Shinohara, B. Hughes, D. Zehnder, and C. McGuire, "Normally-off 5A/1100V GaN-on-Silicon Device for High Voltage Applications," International Electron Devices Meeting(IEDM), pp. 161-16., 2009.
[19] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, "High Breakdown Voltage Achieved on AlGaN/GaN .HEMTs With Integrated Slant Field Plates," IEEE Electron Device Letters, vol. 27, pp. 713-715, 2006.
[20] Silvia Lenci, Xuanwu Kang, Dirk Welleken et al., "Au-free, High-Breakdown AlGaN/GaN MISHEMTs with Low Leakage, High Yield
and Robust TDDB Characteristics," CS MANTECH Conference, 2012.
[21] Injun Hwang, Hyoji Choi, JaeWon Lee et al., "1.6kV, 2.9 mΩ cm2 Normally-off p-GaN HEMT Device," 24th International Symposium on Power Semiconductor Devices and ICs, pp. 41-44, 2012.
[22] Takashi Mizutani, Yutaka Ohno, M. Akita, Shigeru Kishimoto, and
Koichi Maezawa, "A Study on Current Collapse in AlGaN/GaN HEMTs Induced by Bias Stress," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 50, pp. 2015-2020, 2003.
[23] Wataru Saito, Tomohiro Nitta, and Yorito Kakiuchi et al., "Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 54, pp. 1825-1830.
[24] David Deen, David Storm, David Meyer et al., "AlN/GaN HEMT with high-k ALD HfO2 or Ta2O5 gate insulation," Phys. Status Solidi C 8, No. 7-8, 2420-2423, 2011.
[25] Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Kevin J. Chen, "Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges," IEEE Electron Device Letters, vol. 34, pp. 193-195, 2013.