跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳濠濠
Hao-hao Wu
論文名稱: 倍頻非螢光基態耗損超解析之顯微成像方法
Method of non-fluorescence high order harmonic generation ground state depletion super-resolution microscopy
指導教授: 陳思妤
Szu-yu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 超解析顯微術倍頻基態耗損
外文關鍵詞: STED
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用受激輻射耗損顯微術(Stimulated emission depletion Microscopy, STED)中抑制放光的想法嘗試去抑制非螢光訊號,受激輻射耗損顯微術只能運用於螢光訊號,利用受激輻射耗損的方式去抑制點擴散函數周圍的螢光訊號進而取得超解析,然而此技術目前為止僅能運用於螢光訊號的調變,則造成此技術在使用上有了限制,為了改善該方面的限制,我們提出一個新的概念,嘗試用基態耗損(Ground state depletion, GSD)的方式去調控二倍頻或三倍頻等非螢光訊號的強度,則能使此技術的概念可用於非螢光訊號,從而拓展此技術的應用範圍。

    從基態耗損會影響吸收,並利用材料本身因為有實際能階會增強倍頻與可進行基態耗損的特性去證實此概念的可能性,並自製出符合實驗需求的樣本 ,利用Z-scan的技術去量測出樣本的非線性係數與導入耗損光下吸收的變化,並利用倍頻會在介面放光的特性去驗證實際抑制三倍頻放光與Z-scan所量測的數值模擬倍頻放光是否相符合,最後模擬此概念藉由激發受激耗損顯微術系統時有機會達到69nm或更小的的解析度。


    This thesis aims to suppress third harmonic generation (THG) signals through ground state depletion (GSD) based on the concept of stimulated emission depletion in STED microscopy. The STED microscopy is based on fluorescent signals. By depleting the fluorescence signals, it modulates the point spread function (PSF) of fluorescence signals to reach super resolution. However, the applications of STED are limited by the using of fluorescence signals. To overcome this limitation, we propose a new concept to modulate the PSF of THG signals through GSD to improve the resolution of THG microscopy.

    To prove this idea, we illustrate that the material absorption can enhance the THG signals and can be suppressed through ground state depletion. Proper sample of is made and its nonlinear coefficient is measured by both Z-scan technique and interface THG signals measurement. Combined with depletion light, the two-photon absorption coefficient is proved to be suppress through GSD, while the THG at interface is shown to decline with increasing depletion light intensity. Finally, applying the measured nonlinear coefficients to resolution simulation, the results indicate the resolution of THG microscopy can reach 69 nm or smaller based on GSD.

    摘要 i Abstract ii 致謝 vi 目錄 iv 圖目錄 vii 表目錄 vii 第一章 導論 1 1-1 顯微術的發展 1 1-2 超解析顯微術簡介 3 1-3 研究動機與論文大綱 7 第二章 文獻回顧 9 2-1 輻射耗損顯微術原理 9 2-2 基態耗損原理 13 2-3 材料的非線性 16 第三章 非線性分析方法與三倍頻抑制方法 18 3-1 Z-scan原理與架構概念 18 3-2 介面對比法原理與架構概念 29 3-3 三倍頻抑制方法 32 第四章 實驗與模擬 36 4-1 樣本備製 36 4-2 實驗結果與分析 38 4-3 模擬解析度與討論 54 第五章 結論 61 第六章 參考文獻 63

    [1] 醫學加加 ( 2007-9-25) 2-1 顯微技術, Available at:http://big5.39kf.com/cooperate/book/05/cell-biology/2007-09-25-411591.shtml.
    [2] Sheppard, C. and D. Shotton. "Confocal laser scanning microscopy." BIOS Scientific, Oxford. (1997).
    [3] Denk, W., et al. "Two-photon laser scanning fluorescence microscopy." Science 248 (4951): 73-76. (1990).
    [4] Davidson, M. W. and M. Abramowitz. "Optical microscopy." Encyclopedia of imaging science and technology. (2002).
    [5] Bailey, B., et al. "Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation." Nature 366:44-48. (1993).
    [6] Gustafsson, M. G. "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy." Journal of microscopy 198 (2): 82-87. (2000).
    [7] Gustafsson, M. G. "Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution." Proceedings of the National Academy of Sciences of the United States of America 102 (37): 13081-13086. (2005).
    [8] Rust, M. J., et al. "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)." Nature methods 3 (10): 793-796. (2006).
    [9] Huang, B., et al. "Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy." Science 319 (5864): 810-813. (2008).
    [10] Xiaowei Zhuang. "Ring Around the Axon by Amy Maxmen Cytoskeletal proteins form a
    unique structure in nerve cells. "HHMI 26 (2) (2013).
    [11] Betzig, E., et al. "Imaging intracellular fluorescent proteins at nanometer resolution."
    Science 313 (5793): 1642-1645. (2006).
    [12] Hell, S. W. and J. Wichmann "Breaking the diffraction resolution limit by stimulated
    emission: stimulated-emission-depletion fluorescence microscopy." Optics letters 19
    (11): 780-782. (1994).
    [13] Willig, K. I., et al. "STED microscopy reveals that synaptotagmin remains clustered after
    synaptic vesicle exocytosis." Nature 440 (7086): 935-939. (2006).
    [14] Hell, S. W. "Far-field optical nanoscopy." Science 316 (5828): 1153-1158. (2007).
    [15] Jablonski Energy Diagram, Available at:
    http://www.olympusmicro.com/primer/java/jablonski/jabintro/
    [16] Allen, L., et al. "Orbital angular momentum of light and the transformation of
    Laguerre-Gaussian laser modes." Physical Review A 45 (11): 8185. (1992).
    [17] Harke, B., et al. "Resolution scaling in STED microscopy." Optics express 16 (6): 4154-
    4162. (2008).
    [18] Tzeng, Y.-Y., et al. "Axially symmetric polarization converters based on photo-aligned
    liquid crystal films." Optics express 16 (6): 3768-3775. (2008).
    [19] Wildanger, D., et al. "A compact STED microscope providing 3D nanoscale resolution."
    Journal of microscopy 236 (1): 35-43. (2009).
    [20] Willig, K. I., et al. "STED microscopy with continuous wave beams." Nature methods 4
    (11): 915-918. (2007).
    [21] Hell, S. W. and M. Kroug "Ground-state-depletion fluorescence microscopy: A concept
    for breaking the diffraction resolution limit." Applied Physics B 60 (5): 495-497. (1995).
    [22] Bretschneider, S., et al. "Breaking the diffraction barrier in fluorescence microscopy by
    optical shelving." Physical review letters 98 (21): 218103. (2007).
    [23] Boyd, R. W. "Nonlinear optics", Academic press. (2003).
    [24] Huang, Y.-C. "Principles of nonlinear optics." National Tsinghua Univ. (2002).
    [25] Born, M. and E. Wolf. "Principle of optics", Pergamon Press, Oxford. (1975)
    [26] Jackson, J. D. "The Optics Encyclopedia." (1975).
    [27] Moran, M. J., et al. "Interferometric measurements of the nonlinear refractive-index
    coefficient relative to CS 2 in laser-system-related materials." Quantum Electronics,
    IEEE Journal of 11 (6): 259-263. (1975).
    [28] Friberg, S. R. and P. W. Smith "Nonlinear optical glasses for ultrafast optical switches."
    Quantum Electronics, IEEE Journal of 23 (12): 2089-2094. (1987).
    [29] Williams, W. E., et al. "Simple direct Mmasurements of n2, ASTM International. (1985).
    [30] Williams, W. E., et al. "Optical switching and n2 measurements in CS2." Optics
    communications 50 (4): 256-260. (1984).
    [31] Sheik-Bahae, M., et al. "Sensitive measurement of optical nonlinearities using a single
    beam." Quantum Electronics, IEEE Journal of 26 (4): 760-769. (1990)
    [32] Corrêa, D. S., et al. "Z-scan theoretical analysis for three-, four-and five-photon
    absorption." Optics communications 277 (2): 440-445. (2007).
    [33] Veres, G., et al. "Enhancement of third-harmonic generation in absorbing media."
    Applied physics letters 81 (20): 3714-3716. (2002).
    [34] Available at: http://www.nichem.com.tw/
    [35] Available at: http://www.p-oled.cn/product_show.php?id=810
    [36] Jaffar, A. F. "Optical nonlinearity of oxazine dye doped PMMA films by z-scan
    techniques." Journal of Al-Nahrain University 15 (2):106-112. (2012).

    QR CODE
    :::