跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曲芸萱
YUN-HSUAN CHU
論文名稱: 雙源順序熱蒸鍍全無機混合鹵化物鈣鈦礦藍色發光二極體之研究
The Study of Dual-source Sequential Vacuum Deposition of Inorganic Mixed Halide Perovskite for Blue Light Emitting Diode
指導教授: 詹佳樺
Chia-Hua Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 鈣鈦礦雙源順序熱蒸鍍全無機混合鹵化物藍色發光二極體
外文關鍵詞: Perovskite, Dual-source Sequential Vacuum Deposition, Inorganic Mixed Halide, Blue Light Emitting Diode
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全無機金屬鹵化物鈣鈦礦材料因其可以透過調整鹵化物成分來調整能帶,進而擁有
    從深藍光氯化物、綠光溴化物到近紅外光碘化物的不同的發光顏色,所以被廣泛的使用
    在光電領域中。在 LED 領域中,由高純度的三原色光打造廣色域,其中藍光可以藉由
    混和 Cl 和 Br 的鹵化物鈣鈦礦實現,但效率及穩定性都大幅落後綠光及紅光 LED,而目
    前學術上關於蒸鍍製程的研究很少,主流採用溶液法製程製備藍光 LED,並時常加入部
    份有機離子團(如 MA+、FA+和 PEA+等)來提升性能,並非全無機鈣鈦礦材料。
    本研究主要是利用雙源順序蒸鍍法以固定厚度比例分別蒸鍍 CsPbCl3 和 CsPbBr3 材
    料,取代了利用單源熱蒸鍍製程蒸鍍 CsPbBr3-xClx材料,並利用 XRD、UV-vis 及 SEM
    展示了雙源順序蒸鍍的優勢,再進一步搭配製程後退火處理製備出具高品質的
    CsPbBr3-xClx發光薄膜,其 PL 波長為 463.1nm,FWHM 為 16.2nm。
    將薄膜應用在 LED 中作為主動層,並經過 UPS 量測分析後確認其能階位置,印證
    元件以 ITO/ALD-ZnO/CsPbBr3-xClx/碳膠的結構符合能階的匹配。為了使元件亮度等性能
    得到改善,本研究主要針對主動層的熱處理時間、平整性、結晶性、孔洞缺陷和均勻性
    進行一系列的改良,最後成功以主動層參數為 CsPbBr3-CsPbCl3-CsPbBr3 的三明治結構,
    在電壓為 3.9V 以及電流密度為 691mA/cm2 時,得到最大亮度 289nits,在 CIE 1931 色
    域圖中座標為(0.1363,0.0958),對應發光波長為 470.4nm。


    All-inorganic metal halide perovskite materials are widely used in the field of
    optoelectronics, because they can adjust the energy band by adjusting the halide composition,
    and then have different emission colors from deep blue chloride, green bromide to near-infrared
    iodide. In the field of LED research, a wide color gamut is created from high-purity three
    primary colors. Among them, blue light emitting layer can be obtained by mixed halide
    perovskite with Cl and Br, but the efficiency and stability are far behind green and red one. At
    present, little research about blue and green LED has been conducted in evaporation process.
    Most of the research is conducted in solution process to prepare blue LEDs, and often use partial
    organic cation groups(such as MA+
    , FA+
    and PEA+
    ) to improve device performance, which isn’t
    all-inorganic metal halide perovskite material.
    In this study, CsPbCl3 and CsPbBr3 powder is evaporated respectively with a fixed
    thickness ratio by the dual-source sequential vacuum deposition, instead of the single-source
    vacuum deposition to evaporate the CsPbBr3-xClx powder, and XRD, UV-vis and SEM are used
    to demonstrate the advantages of dual-source sequential vacuum deposition. The obtained film
    is further annealed after the deposition process to prepare a high-quality CsPbBr3-xClx
    lumenescent film with PL wavelength of 463.1 nm and FWHM of 16.2 nm.
    The CsPbBr3-xClx thin film is applied in the LED as the active layer, and UPS measurement
    and analysis confirm the energy level position and energy level matching of the LED with the
    structure of ITO /ALD-ZnO /CsPbBr3-xClx /C. In this study, annealing process, flatness,
    crystallinity, hole defects and uniformity of the active layer have been improved to enhance
    LED performance. Finally, the active layer of CsPbBr3-CsPbCl3-CsPbBr3 sandwich structure
    obtain the maximum luminance of 289nits, CIE coordinate of (0.1363, 0.0958) and the
    corresponding emission wavelength of 470.4nm at 3.9V and 691mA/cm2
    .

    目錄 摘要.......................................................................................................................................................... i Abstract ................................................................................................................................................... ii 誌謝........................................................................................................................................................ iii 目錄........................................................................................................................................................ iv 圖目錄.................................................................................................................................................... vi 表目錄.................................................................................................................................................... xi 第 1 章 緒論........................................................................................................................................ vi 1-1 前言 ............................................................................................................................................. 1 1-2 鈣鈦礦材料介紹 ......................................................................................................................... 2 1-3 鈣鈦礦薄膜製造與應用.............................................................................................................. 3 1-3-1 鈣鈦礦薄膜熱蒸鍍製程 ...................................................................................................... 5 1-4 鈣鈦礦的光致發光.................................................................................................................... 10 1-5 鈣鈦礦 LED 發展...................................................................................................................... 14 1-5-1 主動層空位缺陷改善 ........................................................................................................ 17 1-5-2 主動層表面形貌改善 ........................................................................................................ 20 1-5-3 電子及電洞傳輸層改善 .................................................................................................... 22 1-6 研究動機 ................................................................................................................................... 28 第 2 章 實驗方法............................................................................................................................... 29 2-1 實驗藥品及儀器 ....................................................................................................................... 29 2-1-1 實驗藥品............................................................................................................................ 29 2-1-2 實驗儀器............................................................................................................................ 29 2-2 實驗步驟 ................................................................................................................................... 31 2-2-1 基板清潔............................................................................................................................ 31 2-2-2 氧化鋅(ZnO)沉積.............................................................................................................. 31 2-2-3 雙源熱蒸鍍製程................................................................................................................ 31 2-2-4 製程後熱退火.................................................................................................................... 32 2-2-5 碳膠刮塗............................................................................................................................ 32 v 2-2-6 LED 元件量測 .................................................................................................................... 32 2-3 實驗儀器分析介紹.................................................................................................................... 33 2-3-1 X-射線繞射儀(X-ray Diffractometer, XRD)...................................................................... 33 2-3-2 紫外線∕可見光分光光譜儀(Ultraviolet -visible spectroscopy, UV-Vis)....................... 33 2-3-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) .............................................. 33 2-3-4 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy, UPS) ................................. 33 2-3-5 光諧儀及積分球(Spectrometer & Integrating Sphere)...................................................... 33 2-3-6 輝度計(Luminance Colorimeter) ....................................................................................... 34 第 3 章 結果與討論........................................................................................................................... 35 3-1 熱蒸鍍 CsPbBr3-xClx薄膜......................................................................................................... 35 3-1-1 薄膜成分組成.................................................................................................................... 35 3-1-2 熱蒸鍍方法比較................................................................................................................ 35 3-2 CsPbBr3-xClx薄膜分析............................................................................................................... 38 3-2-1 CsPbBr3-xClx薄膜熱處理溫度............................................................................................ 38 3-3 UPS 分析.................................................................................................................................... 40 3-4 藍光 LED 元件.......................................................................................................................... 42 3-4-1 主動層成分改善................................................................................................................ 42 3-4-2 主動層熱處理時間............................................................................................................ 44 3-4-3 主動層平整性改善............................................................................................................ 47 3-4-4 主動層結晶性及孔洞改善 ................................................................................................ 51 3-4-5 主動層結晶均勻度改善 .................................................................................................... 53 第 4 章 結論....................................................................................................................................... 58 參考文獻............................................................................................................................................... 59 附錄....................................................................................................................................................... 64

    [1] X. L. Dai, Y. Z. Deng, X. G. Peng, and Y. Z. Jin, “Quantum-Dot Light-Emitting
    Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Advanced
    Materials, vol. 29, no. 14, Apr 11, 2017.
    [2] Z. J. Yi, N. H. Ladi, X. X. Shai, H. Li, Y. Shen, and M. K. Wang, “Will organicinorganic hybrid halide lead perovskites be eliminated from optoelectronic
    applications?,” Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, Apr 1, 2019.
    [3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites
    as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical
    Society, vol. 131, no. 17, pp. 6050-+, May 6, 2009.
    [4] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin,
    and M. Gratzel, “Sequential deposition as a route to high-performance perovskitesensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-+, Jul 18, 2013.
    [5] M. Z. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction
    perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-+,
    Sep 19, 2013.
    [6] Y. Vaynzof, “The Future of Perovskite Photovoltaics-Thermal Evaporation or Solution
    Processing?,” Advanced Energy Materials, vol. 10, no. 48, Dec, 2020.
    [7] Y. El Ajjouri, F. Palazon, M. Sessolo, and H. J. Bolink, “Single-Source Vacuum
    Deposition of Mechanosynthesized Inorganic Halide Perovskites,” Chemistry of
    Materials, vol. 30, no. 21, pp. 7423-7427, Nov 13, 2018.
    [8] T. X. Xiang, Y. L. Zhang, H. Wu, J. Li, L. Yang, K. W. Wang, J. L. Xia, Z. Deng, J. Y.
    Xiao, W. Li, Z. L. Ku, F. Z. Huang, J. Zhong, Y. Peng, and Y. B. Cheng, “Universal
    defects elimination for high performance thermally evaporated CsPbBr3 perovskite
    solar cells,” Solar Energy Materials and Solar Cells, vol. 206, Mar, 2020.
    60
    [9] P. P. Du, J. H. Li, L. Wang, L. Sun, X. Wang, X. Xu, L. B. Yang, J. C. Pang, W. X.
    Liang, J. J. Luo, Y. Ma, and J. Tang, “Efficient and large-area all vacuum-deposited
    perovskite light-emitting diodes via spatial confinement,” Nature Communications,
    vol. 12, no. 1, Aug 6, 2021.
    [10] Y. T. Chen, C. Y. Zhao, T. T. Zhang, X. H. Wu, W. J. Zhang, and S. J. Ding, “Flexible
    and Filter-Free Color-Imaging Sensors with Multicomponent Perovskites Deposited
    Using Enhanced Vapor Technology,” Small, vol. 17, no. 26, Jul, 2021.
    [11] L. Yang, W. L. Tsai, C. S. Li, B. W. Hsu, C. Y. Chen, C. I. Wu, and H. W. Lin, “HighQuality Conformal Homogeneous All-Vacuum Deposited CsPbCl3 Thin Films and
    Their UV Photodiode Applications,” Acs Applied Materials & Interfaces, vol. 11, no.
    50, pp. 47054-47062, Dec 18, 2019.
    [12] L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of
    annealing process on the stable luminous CsPbCl3 perovskite films by thermal
    evaporation,” Journal of Luminescence, vol. 227, Nov, 2020.
    [13] L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, H. Li, K. Ou, and L. X. Yi,
    “Investigation on violet/blue all-inorganic light-emitting diodes based on CsPbCl3
    films,” Journal of Luminescence, vol. 226, Oct, 2020.
    [14] P. P. Du, J. H. Li, L. Wang, J. Liu, S. R. Li, N. Liu, Y. X. Li, M. Y. Zhang, L. Gao, Y.
    Ma, and J. Tang, “Vacuum-Deposited Blue Inorganic Perovskite Light-Emitting
    Diodes,” Acs Applied Materials & Interfaces, vol. 11, no. 50, pp. 47083-47090, Dec
    18, 2019.
    [15] C. Y. Huang, S. H. Huang, C. L. Wu, Z. H. Wang, and C. C. Yang,
    “Cs4PbBr6/CsPbBr3 Nanocomposites for All-Inorganic Electroluminescent
    Perovskite Light-Emitting Diodes,” Acs Applied Nano Materials, vol. 3, no. 12, pp.
    11760-11768, Dec 24, 2020.
    [16] Y. T. Zou, H. Xu, S. Y. Li, T. Song, L. Kuai, S. Bai, F. Gao, and B. Q. Sun, “Spectral-
    61
    Stable Blue Emission from Moisture-Treated Low-Dimensional Lead Bromide-Based
    Perovskite Films,” Acs Photonics, vol. 6, no. 7, pp. 1728-1735, Jul, 2019.
    [17] Y. C. Chen, H. L. Chou, J. C. Lin, Y. C. Lee, C. W. Pao, J. L. Chen, C. C. Chang, R. Y.
    Chi, T. R. Kuo, C. W. Lu, and D. Y. Wang, “Enhanced Luminescence and Stability of
    Cesium Lead Halide Perovskite CsPbX3 Nanocrystals by Cu2+
    -Assisted Anion
    Exchange Reactions,” Journal of Physical Chemistry C, vol. 123, no. 4, pp. 2353-
    2360, Jan 31, 2019.
    [18] F. H. Ye, H. J. Zhang, P. Wang, J. L. Cai, L. Wang, D. Liu, and T. Wang, “Spectral
    Tuning of Efficient CsPbBrxCl3-x Blue Light-Emitting Diodes via Halogen Exchange
    Triggered by Benzenesulfonates,” Chemistry of Materials, vol. 32, no. 7, pp. 3211-
    3218, Apr 14, 2020.
    [19] K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W.
    J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q.
    H. Xiong, and Z. H. Wei, “Perovskite light-emitting diodes with external quantum
    efficiency exceeding 20 per cent,” Nature, vol. 562, no. 7726, pp. 245-+, Oct 11, 2018.
    [20] T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa, and J.
    Kido, “Anion-exchange red perovskite quantum dots with ammonium iodine salts for
    highly efficient light-emitting devices,” Nature Photonics, vol. 12, no. 11, pp. 681-+,
    Nov, 2018.
    [21] Y. R. Park, H. H. Kim, S. Eom, W. K. Choi, H. Choi, B. R. Lee, and Y. Kang,
    “Luminance efficiency roll-off mechanism in CsPbBr3-xClx mixed-halide perovskite
    quantum dot blue light-emitting diodes,” Journal of Materials Chemistry C, vol. 9, no.
    10, pp. 3608-3619, Mar 14, 2021.
    [22] H. Tsai, H. H. Huang, J. Watt, C. H. Hou, J. Strzalka, J. J. Shyue, L. Wang, and W. Y.
    Nie, “Cesium Lead Halide Perovskite Nanocrystals Assembled in Metal-Organic
    Frameworks for Stable Blue Light Emitting Diodes,” Advanced Science, vol. 9, no. 14,
    62
    May, 2022.
    [23] Y. Zhou, J. Chen, O. M. Bakr, and H. T. Sun, “Metal-Doped Lead Halide Perovskites:
    Synthesis, Properties, and Optoelectronic Applications,” Chemistry of Materials, vol.
    30, no. 19, pp. 6589-6613, Oct 9, 2018.
    [24] W. H. Jeong, Z. K. Yu, L. Gregori, J. Yang, S. R. Ha, J. W. Jang, H. C. Song, J. H.
    Park, E. D. Jung, M. H. Song, S. H. Park, H. J. Snaith, A. Boretti, F. De Angelis, D.
    Meggiolaro, J. Lee, H. Choi, and B. R. Lee, “In situ cadmium surface passivation of
    perovskite nanocrystals for blue LEDs,” Journal of Materials Chemistry A, vol. 9, no.
    47, pp. 26750-26757, Dec 7, 2021.
    [25] C. H. A. Li, P. Geng, S. B. Shivarudraiah, M. Ng, X. F. Zhang, B. M. Xu, L. Guo, and
    J. E. Halpert, “The Multiple Roles of Metal Ion Dopants in Spectrally Stable, Efficient
    Quasi-2D Perovskite Sky-Blue Light-Emitting Devices,” Advanced Optical Materials,
    vol. 9, no. 21, Nov, 2021.
    [26] S. C. Hou, M. K. Gangishetty, Q. M. Quan, and D. N. Congreve, “Efficient Blue and
    White Perovskite Light-Emitting Diodes via Manganese Doping,” Joule, vol. 2, no.
    11, pp. 2421-2433, Nov 21, 2018.
    [27] A. Mishra, M. Alahbakhshi, R. Haroldson, Q. Gu, A. A. Zakhidov, and J. D. Slinker,
    “Pure Blue Electroluminescence by Differentiated Ion Motion in a Single Layer
    Perovskite Device,” Advanced Functional Materials, vol. 31, no. 31, Aug, 2021.
    [28] Y. Shen, H. Y. Wu, Y. Q. Li, K. C. Shen, X. Y. Gao, F. Song, and J. X. Tang,
    “Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue
    Perovskite Light-Emitting Diodes,” Advanced Functional Materials, vol. 31, no. 45,
    Nov, 2021.
    [29] M. Karlsson, Z. Y. Yi, S. Reichert, X. Y. Luo, W. H. Lin, Z. Y. Zhang, C. X. Bao, R.
    Zhang, S. Bai, G. H. J. Zheng, P. P. Teng, L. Duan, Y. Lu, K. B. Zheng, T. Pullerits, C.
    Deibel, W. D. Xu, R. Friend, and F. Gao, “Mixed halide perovskites for spectrally
    63
    stable and high-efficiency blue light-emitting diodes,” Nature Communications, vol.
    12, no. 1, Jan 13, 2021.
    [30] W. Li, Y. X. Xu, D. Wang, F. Chen, and Z. K. Chen, “Inorganic perovskite light
    emitting diodes with ZnO as the electron transport layer by direct atomic layer
    deposition,” Organic Electronics, vol. 57, pp. 60-67, Jun, 2018.
    [31] M. K. Gangishetty, S. C. Hou, Q. M. Quan, and D. N. Congreve, “Reducing
    Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes,”
    Advanced Materials, vol. 30, no. 20, May 17, 2018.
    [32] S. T. Ochsenbein, F. Krieg, Y. Shynkarenko, G. Raino, and M. V. Kovalenko,
    “Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite
    Nanocrystals,” Acs Applied Materials & Interfaces, vol. 11, no. 24, pp. 21655-21660,
    Jun 19, 2019.
    [33] 黃天賜,「單源熱蒸鍍全無機鈣鈦礦薄膜與發光二極體之研究」,國立中央大學,碩
    士論文,民國 110 年
    [34] 張嘉真,「單源熱蒸鍍製備藍光與綠光鈣鈦礦薄膜之研究」,國立中央大學,碩士論
    文,民國 110 年

    QR CODE
    :::