跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張榮恩
Jung-en Chang
論文名稱: 低熱傳導率之多重鍺量子點陣列薄膜製程與量測分析
Fabrication and measuring analysis of low thermal conductivity thin film with multi-layered Ge quantum dots array
指導教授: 李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 73
中文關鍵詞: 鍺量子點熱傳導率熱電薄膜熱電效應
外文關鍵詞: Ge quantum dot, thermal conductivity, thin film, thermoelectric effect
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究為,利用選擇性氧化矽鍺方法,來製作嵌入於介電材料如二氧化矽或氮化矽中的多重鍺量子點陣列薄膜。藉由鍺量子點的低維度特性與其周圍介電材料的改變,形成一個具有低熱傳導率的薄膜,並量測其熱傳導與電傳導特性,作為日後發展熱電元件的基礎。
    在薄膜熱傳導率的量測上,我們利用穩態熱傳導量測法,來進行熱氧化之二氧化矽、 氮化矽(低壓化學氣相沉積)、嵌入於二氧化矽的鍺量子點陣列、與嵌入於氮化矽的鍺量子點陣列薄膜熱傳導率量測,其薄膜的厚度約在數十到數百奈米之間。由量測的結果發現,當嵌入多重鍺量子點陣列於二氧化矽或氮化矽等介電材料中時,可有效地降低熱傳導率,其熱傳導率在溫度為78 K到430 K之間約0.2到0.8 W/mK左右,相較於二氧化矽薄膜(室溫約1 W/mK)與氮化矽薄膜(室溫約1-2 W/mK)的熱傳導率還更低。
    在薄膜電傳導率量測方面,我們利用離子佈植技術將磷離子掺入於多重鍺量子點陣列薄膜中,來提升薄膜的導通電流與電傳導率。我們發現經由離子佈植後的薄膜,其電傳導率約可提升2到3個數量級。


    The study of this thesis is that using the method of selective oxidation of SiGe, to form multi-layered Ge quantum dots (QDs) array embedded in dielectric thin film such as SiO2 or Si3N4. By use of the low dimensional property of Ge QD itself and changing the ambient materials, we can produce thin film which the thermal conductivity is very low. We also measured the thermal conduction and electrical conduction properties of these Ge QDs thin films, and this is the foundation of developing thermoelectric devices in the future.
    For thermal conductivity measurement, we use the steady state method to measure thermal SiO2, LPCVD Si3N4, Ge QDs array embedded in SiO2, and Ge QDs array embedded in Si3N4 thin film. The thickness of these thin films is in the range between tens and hundreds of nanometer. According to the measurement result, we’ve found that it can reduce the thermal conductivity effectively as Ge QDs array is embedded in dielectric such as SiO2 and Si3N4, and the thermal conductivity is approximately 0.2 to 0.8 W/mK at the temperature from 78 K to 430 K. This result is much lower than pure SiO2 and Si3N4 thin film, which the thermal conductivity is near 1 and 1-2 W/mK respectively at room temperature.
    For electrical conductivity measurement, we have doped phosphorous ions into the multi-layered Ge QDs array by implantation to enhance the conducting current and the electrical conductivity. We have found that the electrical conductivity is increased by about 2 to 3 orders after implanted.

    中文摘要……………………………………………………………………………………… I 英文摘要…..…………………………………………………………………………..………II 目錄..........................................................................................................................................IV 圖目錄.………………………………………………………………………………………VII 表目錄……………………………………………………………………………………….XII 第一章 簡介與研究動機 1-1 前言………………………………………………………………………………….1 1-2 熱電效應的發現…………………………………………………………………….2 1-2-1 Seebeck Effect………………………………………………………………...2 1-2-2 Peltier Effect…………………………………………………………………..3 1-2-3 Tomson Effect………………………………………………………………....5 1-2-4 Thermoelectric Effect…………………………………………………………5 1-3 量子點的電傳輸行為……………………………………………………………….8 1-4 研究動機…………………………………………………………………………….9 第二章 薄膜熱傳導量測法簡介 2-1 前言……………………………………………………………………………...…18 2-2 熱擴散量測法……………………………………………………………………...18 2-3 熱傳導量測法……………………………………………………………………...19 2-4 三倍頻量測法……………………………………………………………………...20 2-5 穩態量測法………………………………………………………………………...21 2-5-1 2 chart method………...……………………………………………………..22 2-5-2 2 chart method的量測與執行………………………………………………24 2-5-3 TCR method…………………………………………………………………25 2-5-4 2 chart method與TCR method之比較…………………………………….26 第三章 薄膜製程與鍺量子點陣列結構開發 3-1 前言……………………………………………………………………………...…37 3-2 介電材料薄膜製程………………………………………………………………...37 3-2-1氮化矽薄膜製程…………………………………………………………….37 3-2-2熱氧化層薄膜製程………………………………………………………….38 3-2-3 TEOS氧化層薄膜製程……………………………………………………..38 3-3 鍺量子點的形成…………………………………………………………………...38 3-4 嵌入於二氧化矽之鍺量子點陣列製程…………………………………………...40 3-5 嵌入於氮化矽/二氧化矽之鍺量子點陣列製程…………………………………..40 3-6 量測電極製程……………………………………………………………………...41 3-6-1薄膜熱傳導率量測電極製程……………………………………………….41 3-6-2薄膜電傳導率量測電極製程………………………………………….........42 第四章 薄膜的熱、電特性量測與分析 4-1 前言………………………………………………………………………………...52 4-2 介電材料薄膜熱傳導率量測……………………………………………………...52 4-3 嵌入於介電材料之鍺量子點陣列薄膜熱傳導率量測…………………………...54 4-4 嵌入於介電材料之鍺量子點陣列薄膜電傳導率量測…………………………...55 4-4-1 無離子佈植條件…………………………………………………………....55 4-4-2 有離子佈植條件……………………………………………………………56 4-4-3 離子佈植對薄膜熱阻的影響………………………………………………56 4-5鍺量子點陣列薄膜電傳導率之提升……………………………………………….57 第五章 總結與未來展望…………………………………………………………………….66 參考文獻……………………………………………………………………………………...69

    [1] U. S. DOE., “Thermally activated technologies”, Distributed energy program, Dec. 2006.
    [2] 黃會良等,太陽電池,18頁,初版,五南,台北市,民國97年12月。
    [3] 柯賢文,“熱電轉換及其應用”,科技發展政策報導,第5期,51-65頁,民國96年9月。
    [4] Seebeck, T. J., “Magnetische polarization der metallic und erzedurch temperature-differenze.” Abh. Deutsch. Akad. Wiss., Berlin, pp. 265-373, 1822.
    [5] 朱旭山,“熱電材料與元件之發展與應用”,工業材料雜誌,第220期,93-103頁,民國94年4月。
    [6] Brain C., “Smaller Is Cooler,” Science, vol. 295, no. 5558, pp. 1428-1429, Feb. 2002.
    [7] F. Stabler, “Automotive applications of High Efficiency Thermoelectrics,” DARPA/ONR Program Review and DOE High Efficiency Thermoelectric Workshop, San Diego, CA, Mar. 24-27, 2002.
    [8] Peltier, J. C., “Nouvelles experiences sur la caloriecte des courans electriques,” Ann. Chem., LVI, pp. 371-387, 1834.
    [9] H. van Houten, Molenkamp L. W., Beenakker C. W. J., and Foxon C. T., “Thermo-electric properties of quantum point contacts,” Semicon. Sci. Technol. B, vol.7, no. 3B, pp. 215-222, Mar. 1992.
    [10] F. J. DiSalvo, “Thermoelectric Cooling and Power Generation,” Science, vol. 285, no. 5428, pp.703-706, Jul. 1999.
    [11] J. H. Cheng, C. K. Liu, Y. L. Chao, and R. M. Tain, “Cooling performance of silicon-based thermoelectric device on high power LED,” International conference on Thermoelectrics, Clemson, SC, pp. 53-56, Jun. 2005.
    [12] Gao Min and D. M. Rowe, “Cooling performance of integrated thermoelectric microcooler,” Solid-State Electronics, vol. 43, no. 5, pp. 923-929, May. 1999.
    [13] A. Bejan, and A. D. Allan, Heat Transfer Handbook, New York: Wiley, pp. 1338, 2003.
    [14] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater., vol. 7, pp. 105-114, Feb. 2008.
    [15] S. M. Lee and D. G. Cahill, “Heat transport in thin dielectric films,” J. Appl. Phys., vol. 81, no. 6, pp. 2590-2595, Dec. 1996.
    [16] A. Khitun, A. Balandin, J. L. Liu, and K. L. Wang, “In-plane lattice thermal conductivity of a quantum-dot superlattice,” J. Appl. Phys., vol. 88, no. 2, pp. 696-699, Apr. 2000.
    [17]傅世豪,“單電子電晶體的熱電效應”,碩士論文,國立中央大學,民國99年7月。
    [18] Toshihide Takagahara and Kyozaburo Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, vol. 46, no. 23, pp. 15578-15581, Dec. 1992.
    [19] 陳致均,“自我對準電極鍺量子點單電子/電洞電晶體之製做與特性分析”,碩士論文,國立中央大學,民國97年7月。
    [20] W. M. Liao, P. W. Li, David M. T. Kuo, and W. T. Lai, “Room-temperature transient carrier transport in germanium single-hole/electron transistors,” Appl. Phys. Lett., vol. 88, no. 18, pp. 182109-182109-3, May. 2006.
    [21] P. W. Li, David M. T. Kuo, W. M. Liao, and W. T. Lai, “Study of tunneling currents through germanium quantum-dot single-hole and electron transistors,” Appl. Phys. Lett., vol. 88, no. 21, pp. 213117-213117-3, May. 2006.
    [22] P. W. Li, W. M. Liao, David M. T. Kuo, and S. W. Lin, “Fabrication of a germanium quantum-dot single-electron transistor with large Coulomb-blockade oscillations at room temperature,” Appl. Phys. Lett., vol. 85, no. 9, pp. 1532-1534, Aug. 2004.
    [23] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effect of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, no. 10, pp. 1200-1202, Sep. 1991.
    [24] Y. Bao, W. L. Liu, M. Shamsa, K. Alim, A. A. Balandin, and J. L. Liu, “Electrical and Thermal Conductivity of Ge/Si Quantum Dot Superlattices,” J. Electrochem. Soc., vol. 152, no. 6, pp. G432-G435, Apr. 2005.
    [25] W. L. Liu, T. Borca-Tasciuc, G. Chen, J. L. Liu, and K. L. Wang, “Anisotropic Thermal Conductivity of Ge Quantum-Dot and Symmetrically Strained Si/Ge Superlattices,” J. Nanotech, vol. 1, no. 1, pp. 39-42, Mar. 2001.
    [26] C. J. Glassbrenner and Glen A. Slack, “Thermal Conductivity of Silicon and Germanium from 3oK to the Melting Point,” Phys. Rev., vol. 134, no. 4A, pp. A1058-A1069, May. 1964.
    [27] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, and M. J. Tsai, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett., vol. 83, no. 22, pp.4628-4630, Dec. 2003.
    [28] Yunus A. Cengel, HEAT AND MASS TRANSFER: A PRACTICAL APPROACH, New York: McGraw-Hill, pp. 75, 2006.
    [29] J. Fourier, Theorie analytique de la chaleur, Paris: Gauthier-Villars, 1888.
    [30] E. Jansen and E. Obermeier, “Thermal conductivity measurements on thin films based on micromechanical devises,” J. Micromech. Microeng, vol. 6, no. 1, pp. 118-121, Mar. 1996.
    [31] Norman O. Birge, Paul K. Dixon and Narayanan Menon, “Specific heat spectroscopy: Origins, status and applications of the 3? method,” Thermochimica Acta, vol. 304-305, no. 3, pp. 51-56, Nov. 1997.
    [32] Tsuneyuki Yamane, Naoto Nagai, Shin-ichiro Katayama, and Minoru Todoki, “Measurement of thermal conductivity of silicon dioxide thin films using 3? method,” J. Appl. Phys., vol. 91, no. 12, pp. 9772-9776, Apr. 2002.
    [33] A. Delan, M. Rennau, S. E. Schulz, and T. Gessner, “Thermal conductivity of ultra low-k dielectrics,” Microelectron. Eng., vol. 70, no. 2-4, pp. 280-284, Nov. 2003.
    [34] Mei-Jiau Huang, Tien-Yao Chang, Heng-Chieh Chien, Wei-Che Sun, and Da-Jeng Yao, “The Thickness Difference Method for Measuring the Thermal Conductivity of Thick Films,” JMEMS., vol. 19, no. 4, pp. 895-902, Aug. 2010.
    [35] 賴威廷, “利用選擇性氧化多晶矽鍺形成鍺量子點之物性及電性分析”,碩士論文, 國立中央大學,民國94年7月。
    [36] 簡中彥,“選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用”,碩士論文,國立中央大學,民國98年1月。
    [37] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, vol. 18, no. 14, pp. 145402-145402-7, Apr. 2007.
    [38] C. Y. Chien, Y. J. Chang, J. E. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li,
    “Formation of Ge quantum dots array in layer-cake technique for advanced
    photovoltaics,” Nanotechnology, vol. 21, no. 50, pp. 505201-505201-8, Dec. 2010.
    [39] Kuan-Hung Chen, Chung-Yen Chien and Pei-Wen Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, vol. 21, no. 5, pp. 055302-055302-9, Feb. 2010.
    [40] W. Kern and DA Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev., vol. 31, pp. 187-206, 1970.
    [41] J. L. Liu, A. Khitun, K. L. Wang, T. Borca-Tasciuc, W. L. Liu, G. Chen, and D. P. Yu, “Growth of Ge quantum dot superlattices for thermoelectric applications,” J. Cryst. Growth, vol. 227-228, pp. 1111-1115, Jul. 2001.
    [42] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET’s,”IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, May. 1997.
    [43] Jennine R. Szczech, Jeremy M. Higgins, and Song Jin, “Enhancement of the thermoelectric properties in nanoscale and nanostructured materials,” J. Mater. Chem., vol. 21, no. 5, pp. 4037-4055, 2011.
    [44] Osamu Yamashita and Nobuhiro Sadatomi, “Thermoelectric properties Si1-xGex(x≦0.10) with alloy and dopant segregations,” J. Appl. Phys., vol. 88, no. 1, pp. 245-251, Jul. 2000.

    QR CODE
    :::