跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范文郎
Wen-Lang Fan
論文名稱: 細菌基因體隨機性的統計分析
Statistical analysis ofrandomness of bacterial genomes
指導教授: 李弘謙
Hoong-Chien Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 92
語文別: 中文
論文頁數: 50
中文關鍵詞: 細菌基因體指數分佈基因成長字串間隔準複製體
外文關鍵詞: bacterial genomes, exponential distribution, quasireplicas, genome growth
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物體的遺傳與系統功能的資訊以特殊的編排方式儲存在DNA 列中,而人們很早就發現所有已定序完成的細菌全基因體中,字串出現頻率與隨機序列大不相同。隨機序列的字串應為隨機出現,故字串間隔自然呈指數分佈,實驗驗證亦然。細菌全基因體是高度不隨機的序列,經我們實驗證明,全基因體中幾乎所有字串間隔也都是指數分佈。這表示全基因體雖然非隨機序列,但她每一個字串卻幾乎都
    是隨機無關聯的出現。這給了我們一個重要的全基因體形成的訊息。而謝-李為了要解釋全基因體字串出現頻率分佈的譜寬,提出了一種全基因體的生長模型,這種模型的主要機制,是基因體以最高度的隨機片段複製生成。在這種機制下生長的序列,其短字串在序列中幾乎是不關聯的隨機出現,所以可以預測它們的間隔呈指數分佈。這與細
    菌全基因體中性質相同。


    1 緒論 1.1 前言.................................1 1.2 DNA的簡介............................1 1.3 統計簡介.............................3 1.3.1 伯努力分佈.........................3 1.3.2 二項式分佈.........................4 1.3.3 波松分佈...........................5 1.3.4 指數分佈...........................5 1.4 生物研究資料的取得...................7 1.4.1 生物資料庫.........................8 2 動機與理論 2.1 動機.................................9 2.2 真實序列的字串間隔也似指數分佈.......10 2.3 計算方法.............................12 2.4 基因體的成長模型.....................17 3 數值分析...............................19 4結論....................................44

    [1] Developing Bioinformatics Computer Skills/ Gyntbia Gibas, Per
    Jambeck.
    [2] Introduction to Molecular Biology/ Peter Paolella.?st ed.
    [3] Benjamin Lewin. genes 7. OXFORD
    [4] Watson J. D., Crick F. H. C. (1953). Molecular structure of Nucleic
    Acids. Nature. 171: 737-738.
    [5] Watson J. D., Crick F. H. C. (1953). Genetical Implications of the
    structure of Deoxyribonucleic Acid. Nature. 171: 964-967.
    [6] Enginneering statistics/ Douglas C. Montgomery, George C.
    Runger, Norma Faris Hubele.?nd ed.
    [7] http://www.google.com/
    [8] http://www.ncbi.nlm.nih.gov/
    [9] http://www.cbi.pku.edu.cn/wnet/home.html/
    [11] Karlin S, Campbell AM & Mrazek J (1998). Comparative DNA
    analysis across diverse genomes. Annu. Rev. Genet. 32: 185-225
    [12] Karlin S, et al. (1995). Dinucleotide Relative Abundance Extremes:
    A Genomic Signature. Trends in Genetics. 11: 283-290.
    [13] Karlin S, et al. (1992). Statistical Analyses of Counts and Distributions
    of Restriction Sites in DNA Sequences. Nucl. Acids Res. 20:
    1363-1370.
    [14] Colbert T, et al. (1998). Genomics, Chi Sites and Codons: ?slands
    of Preferred DNA Pairing?Are Oceans of ORFs. Trends in Genetics
    14 485-488.
    [15] Smith HO, et al. (1995). Frequency and Distribution of DNA Uptake
    Signal Sequences in the Haemophilus in Fluenzae Rd genome.
    Science 269: 538-540.
    [16] Karlin SJ, et al. (1996). Frequent Oligonucleotides and Peptides of
    the Haemophilus in Fluenzae Genome. Nucl. Acid Res. 24: 4263-
    4272.
    [17] Smith HO, et al. (1999). DNA Uptake Signal Sequence in Naturally
    Transformable Bacteria, Res. Microbiol. 150: 603-616.
    [18] Hao BL, Lee HC and Zhang SY, et al. Fractal related to long NDA
    sequences and complete genomes. Chaos, Solitons and Fractals 11:
    825-836
    [19] Xie HM and Hao BL. (2003). Visualization of K-tuple distribution
    in procaryote complete genomes and their randomized counterparts.
    IEEE Proc. Comp. Sys. Bioinf. 31-42
    [20] Hsieh LC, Lee HC (2002). Model for the growth of baterial genomes.
    Mod. Phys. Lett. B 22: 821-827.
    [21] Hsieh L. C.,et al. (2003). Minimal model for genome evolution and
    growth. Phys. Rev. Lett. 90: 018101-018104.

    QR CODE
    :::