| 研究生: |
黃心華 Hsin-Hua Huang |
|---|---|
| 論文名稱: |
電解水產氫中極化作用之分析與研究 The investigation of polarization in water electrolysis |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 極化現象 、水電解 、等效電路 、電化學阻抗頻譜 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在水電解過程中,會有極化現象產生,極化現象又分為,濃度極化、活性極化以及歐姆極化,而極化現象是造成電解效率下降的原因之一。故本論文主要是藉由水電解的奈示圖(Nyquist),來解釋其等效電路、極化現象、以及電極片上所生成的氧化現象…等。
本文實驗所設定之參數為電解液氫氧化鉀濃度(10%、20%、30%、40%),電解電位(2V、2.25V、2.5V、2.75V、3V),電極間距(2mm、5mm、10mm),電極為鎳電極,並用恆電位儀紀錄實驗所產生的數據,以探討反應在不同的狀況下,所產生的奈示圖。
結果顯示,在不同電壓下,阻抗隨著電壓的增加而降低。而當濃度在30%時,會有最好的電解效益;濃度在過低或是過高的情況下,主要影響的是濃度極化,而濃度在20%以及30%時,主要影響落在活性極化上。通常活性極化在低電流時為主要的過電壓來源,濃度極化並不明顯;當電流升高至極限電流時,濃度極化急速上升,成為過電壓的主要來源。隨著電壓達到2.5V以上時,陰極表面開始有氧化現象產生,。而電極距離在2mm時,會有最佳的極化表現。
There is polarization phenomenon in water electrolysis. The polarization could be separatedinto three parts, namelyconcentration, active, and ohmic polarizations.
The potassium hydroxide electrolyte concentration is set up from 10% to 40%, and the potential is set up from 2V to 3V. Electrode distance is kept at 2mm, 5mm, and 10mm, while the electrode materialis nickel. Then the potentiostat is used to record the data.
Results show that the impedance decreases when theelectricpotential is increased. The optimal result occurs when the electrolyte concentration is 30%. If the concentration is too high or too low, concentration polarization is the main factor. When the concentration is at20% or 30%, active polarization becomes the primary factor.
The overpotentialis usually due to the active polarization on low current, and the concentration polarization is not obvious at this time. When the current reaches the limit current, the concentration polarization becomes the main cause for the overpotential. When applied potential is over 2.5V, there will beoxided layers deposited on the cathode side surface. The best performanceoccurs as the electrode distance is 2mm.
Key word: polarization, water electrolysis, equivalent circuit model, electrochemical impedance spectroscopy.
[1] S.Dunn, “Hydrogen futures: toward a sustainable energy system,” International Journal of Hydrogen Energy, Vol.27,pp.235-264(2002).
[2] 台灣燃料電池資訊網http://www.tfci.org.tw/Fc/fc1-6.asp
[3] E.Zoulias, E.Varkaraki, N.Lymberopoulos, “A review on water electrolysis,”International Journalof Centre for renewable energy sources, Nicosia.
[4] P. Ridge, Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques,Noyes Data corporation, New Jersey, M. S. Casper(1987).
[5] C.A.Schug, “Operational characterisysics of high-pressure, high-efficiency, water-hydrogen-electrolysis,”International Journal of Hydrogen Energy, Vol.23, pp.1113-1120(1998).
[6] W.Kreuter and H.Homann, “Electrolysis: The important energy transformer in a world of sustainable energy,”International Journal of Hydrogen Energy, Vol.23, pp.661-666(1998).
[7] R. Mosdale and S. Srinivasan, “Analysis of performance and of water and thermal management in proton exchange membrane fuel cells,”ElectrochimicaActa, Vol.40, pp.413-421(1995).
[8] D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis – possibilities of energy saving,”InternationalJournal of Power Sources, Vol.118, pp.315-319(2003).
[9] N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, “Existence of optimum space between electrodes on hydrogen production by water electrolysis,”International Journal of Power Sources, Vol.118, pp. 315-319(2003).
[10] S.Licht, B. Wang, S. Mukerji, T. Soga, M.Umno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,”International Journal of hydrogen Energy, Vol.26, pp.653-659(2001).
[11] A. Pismenny, “Stray currentcorrosionofcarbonsteel, electroplated nickel, andelectroless nickel in an alkaline environment.”(2001)
[12] E. Barsoukov, J.R. Macdonald, “Impedance spectroscopy theory, experiment, and applications” Second Edition, Wiley interscience, pp.377-368,(2005)
[13] M.Keddam, J.-F. Lizee, C. pallotta, and H. J. Takenouti, “Electrochemical behavior of passive iron in acid,”Medium, J. Electrochem. Soc. 131, 2016-2024.(1984)
[14] F. Marangio, M. Santarelli, M. Cali, “Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production,” International Journal of Hydrogen Energy, Vol. 34, pp. 1143-1158.(2009)
[15] http://www.corrosion-doctors.org/Biographies/RitterBio.htm
[16] K. Mazloomi, N. B. Sulaiman and H. Moayedi, “Electrical efficiency of electrolytic hydrogen production”, International Journal of Electrochemical Science, Vol.7, pp.3314-3326(2012).
[17] 田中正三郎著;賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社印行(1998)。
[18] 魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社(1983)。
[19] J. Koryta, W. Dvorak and L. Kavan, Principles of ElectrochemistrySecond Edition, John Wiley and Sons, New York(1993).
[20] 柯賢文,腐蝕及其防制,全華圖書股份有限公司(2012)。
[21] 張鉴清,電化學阻抗技術量測與電化學頻譜的數據處理,浙江大學(2008)。
[22] J. R. Macdonload and W. R. Kenan, Impedance spectroscopy, emphasizing solid materials and systems, Wiley, New York, 1987.
[23] 蘇怡文,微型質子交換膜燃料電池電化學阻抗頻譜法及循環伏安法量測與性能分析,國立中山大學機械與機電工程學系(2012)
[24] 陳佑任,鋅取代鑭鍶鈷鐵氧化物於固態氧化物燃料電池陰極之特性研究,國立台灣科技大學(2008)。
[25] E. Barsoukov and J.R. Macdonald 2005. Impedance spectroscopy, Theory experiment and applications.John Wiley & Sons, Inc.
[26] C.H. Hsu, F. Mansfeld, Corrosion 2001. 57(9),747.
[27] J.M. Gras and P.Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,”International Journal of Hydrogen Energy, Vol. 18, pp. 561-566 (1993).
[28] 田福助,電化學基本原理與應用,五周出版社(2004)。
[29] C.M.A. Brett, “The application of electrochemical impedance techniques toaluminium corrosion in acidic chloride solution,”International Journal of applied electrochemistry, Vol.20, pp. 1000-1003(1990).
[30] 陳士堃編撰,高分子電解質燃料電池與半電池實驗。