| 研究生: |
曾柏耀 Po-Yao Tseng |
|---|---|
| 論文名稱: |
嵌入式人臉偵測系統設計與實作 Design and Implementation of an Embedded Face Detection System |
| 指導教授: | 陳慶瀚 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系在職專班 Executive Master of Computer Science & Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 嵌入式 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人臉偵測應用經常搭配著人臉追蹤、人臉辨識等應用,作為後續應用程式的前置處理,本論文提出了一個可改善人臉偵測系統低硬體相依性、低電源供耗、高程式維護性性的人臉偵測系統。首先透過影像積分處理演算法將人臉影像積分求出人臉影像特徵向量,接著使用快速學習演算法篩選出人臉影像特徵,接著透過級聯分類器演算法中各個弱分類器比對加總並判斷出區塊中是否包含有人臉區塊,最後將上述各個演算法透過MIAT方法論將各個演算法分割為獨立的子功能模組,並透過GRAFCET建模工具替各個子模組建立離散事件模型,最後使用軟體合成技術將各個子功能模組獨立程式化,達到高移植性、高程式碼構架性。依實驗結果顯示在硬體相依性、電源供耗、系統架構化等方面皆優於傳統複雜龐大的人臉偵測系統,並透過此研究所提出的人臉偵測系統未來可更輕易的移植進各式嵌入式平台並可更輕易的結合各式應用如人臉辨識、人臉追蹤等。
Face detection is usually used in pre-processing of signals in applications such as face tracking and face recognition. This research proposes an enhanced face detection system that is of low hardware dependency, low power consumption and easy program maintenance.
First of all, the Integral Image computation is used to derive the facial image feature vectors after which the Adaboost algorithm is applied to screen the facial image features. Then the weak classifier of the cascade classifier algorithm calculates and determines the area that contains human faces. Finally, the above-mentioned algorithms are divided into independent sub modules using the MIAT Theory. The GRAFCET modeling tool then builds discrete event model for each sub module. Finally, each sub functional module is written as an independent program so as to form a structure that is highly transferable and programmable. According to the experiment results, the hardware dependency, power consumption and system structure of the new system is better than the traditional complex face detection system. Hence, the face detection system proposed in this research can be easily integrated into all embedded systems and used in various different applications such as face recognition, face tracking and etc.
[1] R-L. Hsu, "Face detection in color image," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp 696-706, 2002.
[2] G. Iannizzotto, "Competitive Combination of Multiple Eye Detection and Tracking Techniques", IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp 3151-3159, 2010.
[3] Pereira Passarinho, and C.J, "Face Tracking in Unconstrained Color Videos with the Recovery of the Location of Lost Faces", IEEE (Revista IEEE America Latina) Latin America Transactions, vol. 13, no. 1, pp. 307-314, 2015.
[4] Gao Wen, Tian Yonghong, Huang Tiejun, Ma Siwei, and Zhang Xianguo, "The IEEE 1857 Standard: Empowering Smart Video Surveillance Systems", IEEE Intelligent Systems, vol. 29, no. 5, pp. 1541-1672, 2013.
[5] U. Uludag, S. Pankanti, S. Prabhakar, and Jain, A.K., "Biometric cryptosystems: issues and challenges", Proceedings of the IEEE, vol. 92, no. 6, pp. 948-960, 2004.
[6] L. Acasandrei, and A. Barriga, "AMBA bus hardware accelerator IP for Viola-Jones face detection", IET Computers & Digital Techniques, , vol. 7, no. 5, pp. 200-209, 2013.
[7] L. Bruzzone, and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps", IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 9, pp. 1984-1996, 2002.
[8] L. Essannouni, and D. Aboutajdine, "Correlation of robust Haar-like feature", Electronics Letters, vol. 47, no. 17, pp. 961-962, 2011.
[9] S. Wu, and H. Nagahashi, "Parameterized AdaBoost: Introducing a Parameter to Speed Up the Training of Real AdaBoost", IEEE Signal Processing Letters, vol. 21, no. 6, pp. 687-691, 2014.
[10] C.A. Perez, V.A. Lazcano and P.A. Estevez, “Real-Time Iris Detection on Coronal-Axis-Rotated Faces”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 5, pp. 971-978, 2007.
[11] M. Gooding, and L. Cohen, “Evaluation of three ATE test environments”, IEEE Aerospace and Electronic Systems Magazine, vol. 12, no. 9, pp. 12-17, 2002
[12] Janarbek Matai, Ali Irturk and Ryan Kastner, "Design and Implementation of an FPGA-based Real-Time Face Recognition System", IEEE International Symposium on Field-Programmable Custom Computing Machines, pp 97-100, 2011.
[13] Shuiying Zhang, Xuebo Jin, Guang Li, "Face detecting algorithm of the Cascade Adaboost on DSP", Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, pp 651-654, 2010
[14] Goksel GUNLU, "DSP BASED MODULAR FACE RECOGNITION SYSTEM", Proceedings of the 4th European DSP in Education and Research Conference, pp 28-31. 2010.
[15] C.H. Chen, C.M. Kuo, C.Y. Chen and J.H. Dai, "The design and synthesis using hierarchical robotic discrete-event modeling", Journal of Vibration and Control, vol.19, no.11, pp.1603–1613, 2013.
[16] A. Torralba, R. Fergus, Freeman, and W.T., "80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1958-1970, 2008.
[17] O, Peng, "A Fast Integral Image Computing Hardware Architecture With High Power and Area Efficiency", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 75-79, 2014.
[18] U, Braga-Neto, "Grayscale level connectivity: theory and applications", IEEE Transactions on Image Processing, vol. 13, no. 12, pp. 1567-1580, 2004.
[19] G, Yunlong, "A Dynamic AdaBoost Algorithm With Adaptive Changes of Loss Function", IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 6, pp. 1828-1841, 2012.