跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝佳諭
Chia-Yu Hsieh
論文名稱: LEPS2實驗用高阻抗平板偵測器的研發
Research and Development of Prototype MRPC for LEPS2 Experimrnt
指導教授: 章文箴
Wen-Chen Chang
林宗泰
W. T. Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 100
語文別: 英文
論文頁數: 53
中文關鍵詞: 高阻抗平板偵測器
外文關鍵詞: LEPS2, RPC, TOF, MRPC
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LEPS2實驗將在2013年於日本SPring-8開始取數。 一組4pi維度的偵測器正在研發當中,其中高阻抗平板偵測器(Multi-gap Resistive Plate Chamber-MRPC)為量測粒子飛行時間的偵測器。 為了在飛行距離約為一公尺中分辨動量為 1.5 GeV/c 的 K 和 pi 兩種粒子,高阻抗平板偵測器必須到達 50皮秒 的時間解析度及 99 % 以上的效率。 為了最佳化我們的高阻抗平板偵測器,我們研究了偵測器輸出的幾何形狀、氣體成分、放大器、、、等等。目前為止,我們決定了高阻抗平板偵測器的結構和輸出板的大小。 260 微米 x 5 gaps x 2 層的高阻抗平板偵測器,在 2.5 x 100 平方公分輸出板下,其可以到達 60 皮秒的時間解析度及 99 % 的效率。 整個量測飛行時間的系統約需要400個電子通道。將來我們將會繼續研究放大器和氣體成分。


    The LEPSII experiment is scheduled to start in 2013. The development of a 4 pi detectors and the construction of a solenoid magnet is currently underway. In order to
    separate K and pi with momenta up to 1.5 GeV/c using Time-of-Flight (TOF) over a distance of about 100 cm in the magnet, Multi-Gap Resistive Plate Chamber (MRPC) operated in avalanche mode is chosen due to the need of large area, high e ciency and 50-ps time resolution. For optimizing the best con guration of MRPC, we investigated geometry of pad/strip, width of gap, number of gap, the gas mixture, trigger rate, etc. The 260um x 2 stacks x 5 gaps MRPC with the 2.5 x 100 cm2 strip reached 99 % effi ciency and around 60-ps time resolution below 20 Hz/cm2. The chamber was filled with gas mixture of 90 % R134a, 5 % SF6 and 5 % Iso-butane. The signals were ampli ed by PMT Amp (KN2104). We needs around 400 channels to cover the whole area of TOF system. The performance of MRPC is close to LEPSII requirement. The gas mixture and the ampli er will be investigated in the future.

    1 Introduction 1 1.1 Particle Identi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TOF Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Mass resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Time resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 LEPS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 The requirement of RPC for LEPSII . . . . . . . . . . . . . . . . . 8 2 Resistive Plate Chamber (RPC) 10 2.1 Gas Ionization chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Operation Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 Operational Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Choice of Filling Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Resistive Plate Chamber (RPC) . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Prototype MRPC for LEPSII 20 3.1 Construction of Prototype MRPC . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Assembly Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.3 Cosmic Ray Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Beam Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Results and Discussion 33 4.1 High Voltage Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Trigger Rate Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Material of Read-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4 Gap Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.5 Number of Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.6 Pad Read-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.6.1 Pad Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.6.2 Trigger Position for Pad Read-out . . . . . . . . . . . . . . . . . . . 40 4.6.3 Read-out Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.7 Strip Read-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.7.1 Gap width and Strip Size . . . . . . . . . . . . . . . . . . . . . . . 42 4.7.2 Trigger Position for Strip Read-out . . . . . . . . . . . . . . . . . . 44 4.8 Gas Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.9 Ampli er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Conclusion 48 Bibliography 50

    [1] C. Lippmann. Particle Identi cation. Nucl. Instrum. and Meth. A, 666:148{172,
    2012.
    [2] Lecture in ICFA Instrumentation School(2011):Particle Identi cation, 2010.
    http://lhcb-doc.web.cern.ch/lhcb-doc/presentations/lectures/Particle%
    20Identification.pdf.
    [3] Lecture in Kirchho -Institut, INF: The Physics of Particle Detectors, 2010.
    http://www.kip.uni-heidelberg.de/~coulon/Lectures/DetectorsSoSe10/
    Free_PDFs/Lecture11.pdf.
    [4] Transition radiation. http://en.wikipedia.org/wiki/Transition_radiation.
    [5] Cherenkov radiation. http://en.wikipedia.org/wiki/Cherenkov_radiation.
    [6] S. An et al. A 20 ps timing device - A Multigap Resistive Plate Chamber with 24
    gas gaps. Nucl. Instrum. and Meth. A, 594:39{43, 2008.
    [7] Masayuki Niiyama. LEPSII GeV photons. In XIV International Conference on
    Hadron Spectroscopy (hadron2011), Munich, Germany, June 2011.
    [8] Electrical Breakdown of Gases. Oxford At The Clarendon Press, 1953.
    [9] Construction of a Prototype Spark Chamber, 2009. http://arxiv.org/ftp/arxiv/
    papers/1010/1010.4010.pdf.
    [10] Techniques for Nuclear and Particle Physics Experiments: A How To Approach.
    Springer, 1994.
    [11] Gas Filled Detectors. http://www.science.mcmaster.ca/medphys/images/files/
    courses/4R06/note3.pdf.
    [12] R.Santonico and R.Cardarelli. Development of resistive plate counters. Nucl. In-
    strum. and Meth., 187:377, 1981.
    [13] I. Crotty et al. The non-spark mode and high rate operation of resistive parallel
    plate chambers. Nucl. Instrum. and Meth. A, 337:370{381, 1994.
    [14] P. Fonte. Applications and New Developments in Resistive Plate Chambers. IEEE
    Tran. on Nucl. Sci, 49:881{887, 2002.
    [15] P. Camarri et al. Streamer suppression with SF6 in RPCs operated in avalanche
    mode. Nucl. Instrum. and Meth. A, 414:317{324, 1998.
    [16] V. Koreshev et al. Operation of narrow gap RPC with tetra
    uoroethane based
    mixtures. Nucl. Instrum. and Meth. A, 456:46{49, 2000.
    [17] V.Peskov and P. Fonte. In Proc. Intl. Conf. on Position-Sensitive Detectors, Lon-
    don,England, 1999.
    [18] Henry R. Band. Experience with the BaBar Resistive Plate Chambers. IEEE Nucl.
    Sci. Sym. Conf., 5:3755{3759, 2003.
    [19] Jian Gui Wang. RPC performance at KLM/BELLE. Nucl. Instrum. and Meth. A,
    508:133{136, 2003.
    [20] P. Dupieux A. Blanc. The trigger system of the ALICE muon spectrometer at the
    LHC. Nucl. Instrum. and Meth. A, 604:301{303, 2009.
    [21] A.N. Akindinov et al. Latest results on the performance of the multigap resistive
    plate chamber used for the ALICE TOF. Nucl. Instrum. and Meth. A, 533:74{78,
    2004.
    [22] B. Bonner et al. A single Time-of-Flight tray based on multigap resistive plate
    chambers for the STAR experiment at RHIC. Nucl. Instrum. and Meth. A, 508:181{
    184, 2003.
    [23] Min Sang Ryu et al. FOPI Detector for Heavy-ion Collision Experiment at SIS/GSI.
    Journal of the Korean Physical Society, 59:1605{1608, 2011.
    [24] M. Baldo-Ceolin et al. The time-of-ight detector of the HARP experiment : con-
    sruction and performance. Nucl. Instrum. and Meth. A, 532:548{561, 2004.
    [25] A. Blanco et al. A large area timing RPC. Nucl. Instrum. and Meth. A, 485:328{342,
    2002.
    [26] M. Abbrescia et al. Performance of a six gap MRPC built for large area coverage.
    Nucl. Instrum. and Meth. A, 593:263{268, 2008.
    [27] Y.J. Sun et al. New prototype multi-gap resistive plate chambers with long strips.
    Nucl. Instrum. and Meth. A, 593:307{313, 2008.
    [28] WANG Yi et al. An MRPC for fast neutron detection. Chinese Phys. C, 34:88{91,
    2010.
    [29] A. Akindinov et al. RPC with low-resistive phosphate glass electrodes as a candidate
    for the CBM TOF.
    [30] Glass Company. http://www.nsg.com/ja-jp/our-businesses/specialtyglass/
    informationtechnology/displayglass/uff-ultra-fine-flat-glass.
    [31] PCB Company. http://www.plotech.com/company_01.asp.
    [32] Copper Tape Company. http://www.marutsu.co.jp/shohin_23268/.
    [33] Carbon Tape Company. HPhttp://www.esd-emi.com/.
    [34] ALICE Addendum to the Technical Design Report of the Time of Flight System
    (TOF). https://edms.cern.ch/file/460192/1/ALICE-DOC-2004-002.pdf.
    [35] Discriminator. http://www-esd.fnal.gov/esd/catalog/main/psnim/711.htm.
    [36] ADC. http://www.repic.co.jp/contents/products/repic/seihin/rpc_022.
    html.
    [37] TDC. http://gn-d.jp/guest/gnc040.pdf.
    [38] Werner Riegler et al. Detector physics and simulation of resistive plate chambers.
    Nucl. Instrum. and Meth. A, 500:144{162, 2003.
    [39] PMT Ampli er. http://www.kaizuworks.co.jp/2104-1a.htm.
    [40] F. Anghinol et al. NINO: an ultra-fast and low-power front-end am-
    plier/discriminator ASIC. Nucl. Instrum. and Meth. A, 533:183{187, 2004.
    [41] AD8099: UNPRECEDENTED LOW NOISE AND LOW DISTORTION
    HIGH SPEED OP-AMP. http://www.analog.com/en/high-speed-op-amps/
    low-noise-low-distortion-amplifiers/ad8099/products/product.html.

    QR CODE
    :::