跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張瑋晟
WEI-CHENG JHANG
論文名稱: 超導量子干涉元件製作
Fabrication of Superconducting Quantum Interference Device
指導教授: 陳永富
YONG-FU CHEN
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 76
中文關鍵詞: 超導量子干涉元件製程
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究目的為製作出超導量子干涉元件,並能控制製作出的元件之電阻值。元件有兩種設計,一種用於量測元件室溫電阻值和臨界電流等特性,另一種上面有共面波導結構用於微波量測。
    元件的製作方法為黃光微影製程製作1 μm 以上結構,電子束微影製程製作1 μm以下結構,蒸鍍使用電子槍蒸鍍機台,約瑟夫森接面的製作方式為Dolan bridge 光阻結構、陰影蒸鍍和腔體內氧化。控制電阻的主要方法為利用慕尼黑工業大學物理系WMI 實驗室提出的P^(1/2)t rule;調整氧化壓力Pox 和氧化時間tox 來達到控制電阻的目的。
    本文量測元件的電阻數據來完成P^(1/2)t rule 的擬合,量測元件電壓電流曲線圖(I-V Curve) 來確認元件的超導特性,量測磁通量影響通過超導線圈電流的關係確認元件組成超導線圈且受磁通量影響。
    經過研究後我們可以製作出10 kΩ 以下的超導量子干涉元件,發現我們的元件有嚴重的臨界電流抑制現象,電阻越高的元件此現象越明顯。同時發現我們超導線圈的loop size 和設計圖上的設計有誤差,我們也找到了一些會影響我們實驗室製作超導元件成功率的因素。


    The goal of this thesis is to produce superconducting quantum interference device(SQUID) and control the resistance of the device. We have two kinds of designs: one is used to measure resistance and critical current characteristics at room temperature, and the other with a coplanar waveguide structure is used for microwave measurement.
    The production uses the photolithography process to produce the structure above 1 micron, and the electron beam lithography process to produce the structure below 1 micron, and electron gun evaporation process to produce thin aluminum film. The fabrication methods of the Josephson junction are Dolan bridge, shadow evaporation and oxidation in the evaporation cavity. The way of controlling the resistance is to use P^(1/2)t rule which proposed by WMI laboratory of the Physics Department of Technische Universität München; By adjusting the oxidation pressure Pox and oxidation time tox to achieve the purpose of controlling the resistance.
    This thesis measures the resistance data of the SQUID to fit P^(1/2)t rule, measures I-V Curve of SQUID to confirm the superconducting characteristics of the devices, and measuring the effect of magnetic flux on superconducting current confirms that the devices are affected by the magnetic flux and compose the superconducting coil.
    In our study, we can produce SQUID below 10 kΩ. We found that our devices have serious critical current suppression. The higher the resistance is, the more serious the
    phenomenon is. At the same time, we found that we have an error between loop size of SQUID and design. we also found some factors that affect the success rate of our sample
    fabrication.

    摘要......................xiii Abstract...............................................xv 誌謝...................................................xvii 目錄...................................................xix 圖目錄.................................................xxi 表目錄.................................................xxiii 一、緒論...............................................1 二、理論背景...........................................3 2.1 超導體特性.........................................3 2.2 約瑟夫森接面(josephson junction)...................3 2.2.1 特徵能量(Characteristic energies)................5 2.2.2 電流-電壓曲線(I-V Curve).........................6 2.3 直流超導量子干涉元件................................7 2.4 P1/2t rule.........................................8 2.5 理論應用...........................................9 三、研究內容與方法......................................11 3.1 超導量子干涉元件製作—大尺度結構部分..................12 3.1.1 黃光微影製程......................................13 3.1.2 電子槍蒸鍍........................................13 3.1.3 鋁的濕式蝕刻......................................15 3.2 超導量子干涉元件製作—小尺度結構部分...................15 3.2.1 電子束微影製程....................................16 3.2.2 電子槍蒸鍍及氧化..................................19 3.3 元件量測............................................21 3.3.1 超導量子干涉元件電阻及臨界電流量測..................22 3.3.2 磁通量影響超導量子干涉元件跨電壓量測................25 四、實驗數據分析.........................................27 4.1 元件形貌分析.........................................27 4.1.1 曝光劑量影響.......................................27 4.1.2 氧電漿清洗影響.....................................30 4.2 超導量子干涉元件電阻分析..............................31 4.2.1 超導量子干涉元件電阻_ 不同氧化時間...................32 4.2.2 超導量子干涉元件電阻_ 實驗室P1/2t rule 參數擬合......33 4.2.3 超導量子干涉元件電阻_ 不同接面面積...................34 4.3 超導量子干涉元件量測..................................35 4.3.1 臨界電流...........................................35 4.3.2 磁通量影響電流......................................37 4.4 其餘影響因素..........................................38 五、結論.................................................41 參考文獻.................................................43 附錄A 實驗參數...........................................45 A.1 黃光微影參數.........................................45 A.2 電子束微影參數.......................................46 A.3 超導量子干涉元件蒸鍍及氧化參數........................46 附錄B 裝置使用說明.......................................47 B.1 電子槍蒸鍍機台.......................................47

    [1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, no. 6, pp. 467–488, Jun. 1982, issn: 00207748. doi: 10.1007/BF02650179. [Online]. Available: https://link.springer.com/article/10.1007/BF02650179.
    [2] P. Benioff, “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines,” Journal of Statistical Physics, vol. 22, no. 5, pp. 563–591, May 1980, issn: 00224715. doi: 10.1007/BF01011339. [Online]. Available: https://link.springer.com/article/10.1007/BF01011339.
    [3] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable superconducting
    processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019, issn: 14764687. doi: 10.1038/s41586- 019- 1666- 5. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5.
    [4] G. AI Quantum, “Hartree-Fock on a superconducting qubit quantum computer,” Science, vol. 369, no. 6507, pp. 1084–1089, Aug. 2020, issn: 10959203. doi: 10.1126/science.
    abb9811. arXiv: 2004.04174. [Online]. Available: http://science.sciencemag.org/.
    [5] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature, vol. 398, no. 6730, pp. 786–788, Apr. 1999, issn: 00280836. doi: 10.1038/19718. arXiv: 9904003 [cond-mat]. [Online]. Available: https://www.nature.com/articles/19718.
    [6] A. Wallraff, D. I. Schuster, A. Blais, et al., “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature, vol. 431, no. 7005, pp. 162–167, Sep. 2004, issn: 00280836. doi: 10.1038/nature02851. [Online]. Available:
    https://www.nature.com/articles/nature02851.
    [7] B. Akademie and D. Wissenschaften, “Fabrication stability of Josephson junctions for superconducting qubits,” no. May, 2015.
    [8] J. Effect, S. Electronics, R. Gross, and A. Marx, “Applied Superconductivity,” Tech. Rep.,
    2007.
    [9] J. E. Boggio, “The pressure dependence of the oxidation of aluminum at 298 °K,” Surface Science, vol. 14, no. 1, pp. 1–6, Mar. 1969, issn: 00396028. doi: 10.1016/0039-6028(69)
    90041-7.
    [10] D. Van Delft and P. Kes, “The discovery of superconductivity,” Physics Today, vol. 63,
    no. 9, pp. 38–43, Sep. 2010, issn: 00319228. doi: 10.1063/1.3490499.
    [11] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Physical Review, vol. 108, no. 5, pp. 1175–1204, Dec. 1957, issn: 0031899X. doi: 10.1103/PhysRev.
    108.1175. [Online]. Available: https://journals.aps.org/pr/abstract/10.1103/ PhysRev.108.1175.
    [12] 費曼, 費曼物理學講義III:量子力學(3)薛丁格方程式, The Science of Microfabrication, 吳. 高涌泉, Ed. 天下文化, 2018.
    [13] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters, vol. 1, no. 7, pp. 251–253, Jul. 1962, issn: 00319163. doi: 10.1016/0031-9163(62)91369-0.
    [14] V. Ambegaokar and A. Baratoff, “Tunneling between superconductors,” Physical Review Letters, vol. 10, no. 11, pp. 486–489, Jun. 1963, issn: 00319007. doi: 10 . 1103 /
    PhysRevLett.10.486. [Online]. Available: https://journals.aps.org/prl/abstract/ 10.1103/PhysRevLett.10.486.
    [15] E. Xie, “Optimized fabrication process for nanoscale Josephson junctions used in superconducting quantum circuits Master ’ s Thesis,” 2013.
    [16] A. Varlamov and L. Aslamazov, “What is a SQUID?” In The Wonders of Physics, 2012, pp. 253–264. doi: 10.1142/9789814374170_0026. [Online]. Available: https://sites.google.com/site/squiddevices/home.
    [17] Y. L. Wu, H. Deng, H. F. Yu, et al., “Fabrication of Al/AlOx/Al Josephson junctions and superconducting quantum circuits by shadow evaporation and a dynamic oxidation
    process,” Chinese Physics B, vol. 22, no. 6, Jun. 2013, issn: 16741056. doi: 10.1088/1674-1056/22/6/060309.
    [18] MicroChem, “PROCESSING GUIDELINES Substrate Preparation,” Tech. Rep. [Online]. Available: http://microchem.com/pdf/PMMA_Data_Sheet.pdf.

    QR CODE
    :::