| 研究生: |
王志湖 Chih-Hu Wang |
|---|---|
| 論文名稱: |
隨機系統之H ∞ 濾波器及H ∞ 控制器設計 H∞ Filter and H∞ Control Design for Stochastic System |
| 指導教授: |
蘇朝琴
C. C. Su 劉建男 Chien-Nan Jimmy Liu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 濾波器 、控制 、隨機系統 、模糊 |
| 外文關鍵詞: | Fuzzy, Filter, Stochastic System, Control |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一些應用中,例如:在不確定的隨機訊號與系統模型過程裡, H∞濾波器提供了強
健的工具作為訊號評估、參數預測,及輸出回授設計用。在這篇論文裡,我們考慮使用
一應用例作為開發基於H∞濾波器的輸出回授控制系統之說明。
在使用現代化寬頻網路時,於資料暴量與長距離有關之MPEG傳輸流量的評估,藉
以改善通訊網路有關的服務品質。具趨勢和週期性的MPEG視頻訊號傳輸量可用此提出
之隨機狀態空間模組完整地取得,藉以改進預估的準確度。一般而言在即時性應用裡之
隨機過程是在不確定性或未備妥的狀況下,本論文提出一種遞迴的H∞ 濾波演算法作為
長距離傳輸量參數評估。提出不同於以前的估測方法,此處使用針對分別地預估I、P 和
B 訊號框來估測MPEG視頻傳輸量。利用真正的MPEG 通信量數據來模擬出結果,顯
示出時間變化的趨勢、週期性成分,和長距離相依性的屬性可被用來作為評估與擷取方
法。提出的方法比一些適應性的類神經網路方法具有更優越性能和更低的複雜性,例如
TDNN、NARX, 及Elman類神經網路。長距離傳輸量之MPEG視頻準確和迅速的估測,
有助於動態的寬頻分配與更好的網路使用率,以及使用更少的貯列等來改善高速封包網
路的傳輸量管理機制。
最後,我們將著眼於強健H∞輸出回饋控制在非線性隨機連續延時系統問題上,使
用Takagi和Sugeno模糊模式來描述的狀態相依的噪音之研究。基於這種模糊的方法,採
模糊控制單元和模糊狀態預估器以確保H∞強健穩定性,同時藉解雙線性矩陣不等式實
現於非線性隨機系統。
Abstract
In practical applications such as uncertainties in the system model and signal statistics,
the H∞ filter has been proven to be a robust tool for signal prediction, parameter
estimation, and output feedback control system design. In this dissertation, we consider
a novel application of the H∞ filter and the development of the H∞−filter-based output
feedback control system.
(i) The application is to predict the burst and long-range dependent MPEG traffic flow
in a modern wideband network so as to improve the related QoS of the communication
network. The trend and periodic characteristics of MPEG video traffic are fully captured
by a proposed stochastic state-space dynamic model, which includes traffic parameters
in the state vector, to improve prediction accuracy. As the statistics of the underlying
processes are either unavailable or uncertain in real-time applications, a recursive H∞
filtering algorithm is proposed to estimate traffic parameters for long-range prediction.
Unlike previous prediction schemes, which predict I, P and B frames separately, the
proposed scheme predicts the composite MPEG video traffic. Simulation results based
on real MPEG traffic data show that the time-varying trend, the periodic components,
and the long-range dependence property can be splendidly predicted and captured by the
proposed method. The proposed scheme has superior performance and lower complexity
than some other adaptive neural network methods, such as TDNN, NARX, and Elman
neural networks, in long-range prediction. With accurate and fast long-range prediction
of MPEG video traffic, it is useful for dynamic bandwidth allocation with better network
utilization and less queue occupancy to improve traffic management in high speed packet
networks.
(ii) Finally, we shall study the robust H∞ output feedback control problem for nonlinear
stochastic continuous-time time-delay systems with state-dependent noise represented
by Takagi and Sugeno fuzzy model. Based on the fuzzy approach, the fuzzy controller and
the fuzzy state estimator which guarantee H∞ robustness performance for the considered
nonlinear stochastic systems can be obtained by solving bilinear matrix inequalities.
[1] S. C. Liew and D. C. Y. Tse A control-theoretic approach to adapting VBR
compressed video for transport over a CBR communications channel, IEEE
Trans. Networking, vol. 6, no. 1, pp. 42-55, 1998.
[2] P. Pancha and M. E. Zarki, MPEG coding for variable bit rate video trans-
mission,IEEE Commun. Mag., vol. 32, no. 5, pp. 54-66, May 1994.
[3] E. Elwalid, D. Heyman, T. Lakshman, A. Weiss, and D Mitra, Fundamental
bounds and approximations for ATM multiplexers with application to video
teleconferencing, IEEE J. Select. Areas Commun., vol. 13, no. 6, pp. 1004-
1016, Aug. 1995.
[4] J. Beran, R. Sherman, M. S. Taqqu, andW.Willinger, Long-range dependence
in variable-bit-rate video tra¢ c, IEEE Trans. Commun., vol. 43, no. 2, pp.
1566-1579, Feb.-March-April, 1995.
[5] D. P. Heyman and T. V. Lakshman, Source models for VBR broadcast-video
tra¢ c,IEEE/ACM Trans. Networking, vol. 4, no. 1, pp. 40-48, Feb. 1996.
[6] D. P. Heyman and T. V. Lakshman, What are the implications of long-range
dependence for VBR-video tra¢ c engineering,IEEE/ACM Trans. Networking,
vol. 4, no. 3, pp. 301-317, Jun. 1996.
[7] H. Heeke, Tra¢ c control algorithm for ATM networks,IEEE Trans. Circuits
System Video Technol., vol. 3, no. 3, pp. 182-189, June 1993.
[8] M. Conti, E. Gregori, and A. Larsson, Study of the impact of MPEG-1 corre-
lations on video-sources statistical multiplexing,IEEE J. Select. Areas Com-
mun., vol. 14, no. 7, pp. 1455-1471, Sep. 1996.
[9] M. Grossglauser and J.C. Bolot, On the relevance of long-range dependence
in network tra¢ c,IEEE/ACM Trans. Networking, vol. 7, no. 5, pp. 629-640,
Oct. 1999.
[10] S. Chong, S. Li and J. Ghosh, Predictive dynamic bandwidth allocation for
e¢ cient transport of real-time VBR video over ATM,IEEE J. Select. Areas
Commun., vol. 13, no. 1, pp. 12-23, Jan. 1995.
[11] P. Chang and J. Hu, Optimal nonlinear adaptive prediction and modelling
of MPEG video in ATM networks using piplined recurrent neural networks,
IEEE J. Select. Areas Commun., vol. 15, no. 6, pp. 1087-1100, Aug. 1997.
[12] A. Adas, Using adaptive linear prediction to support real-time VBR video
under RCBR network service model,IEEE Trans. Networking, vol. 6, no. 5,
pp. 635-644, Oct. 1998.
[13] S. J. Yoo, E¢ cient tra¢ c prediction scheme for real-time VBR MPEG video
transmission over high-speed networks,IEEE Trans. Broadcasting, vol. 48, no.
11, pp. 10-18, March 2002.
[14] A. D. Doulamis, N. D. Doulamis, and S. D. Kollias, An adaptable neural-
network model for recursive nonlinear tra¢ c prediction and modeling of MPEG
video sources,IEEE Trans. on Neural Networks, vol. 14, no. 1, pp. 150-166,
Jan. 2003.
[15] A. Bhattacharya, A. G. Parlos, and A. F. Atiya, Prediction of MPEG-
coded video source tra¢ c using recurrent neural networks,IEEE Trans. Signal
Processing, vol. 51, no. 8, pp. 2177-2190, August 2003.
[16] A. Abdennour, Evaluation of neural network architectures for MPEG-4 video
tra¢ c prediction," IEEE Trans. Broadcasting, vol. 52, no. 2, pp. 184-192, June
2006.
[17] N. Ansari, H. Liu, Y. Q. Shi, and H. Zhao, On Modeling MPEG Video Traf-
cs,IEEE Trans. Broadcasting, vol. 48, no. 4, pp. 337-347, Dec. 2002.
[18] K. M. Nagpal and P. P. Khargonekar, Filtering and smoothing in an H1
setting, IEEE Trans. Automatic Control, vol. 36, no. 2, pp. 152-160, Feb.
1991.
[19] X. Shen and L. Deng, Discrete H1
lter design with application to speech
enhance,ICASSP-95, vol. 2, pp. 1504-1507 1995.
[20] B. Hassibi, A. H. Sayed, and T. Kailath, Linear estimation in Krein spaces
part I: Theory,IEEE Trans. Automat. Contr., vol. 41, no. 1, pp. 18-33, Jan.
1996.
[21] B. Hassibi, A. H. Sayed, and T. Kailath, Linear estimation in Krein spaces
Part II: Application,IEEE Trans. Automat. Contr., vol. 41, no. 1, pp. 34-49,
Jan. 1996.
[22] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting,
Springer, New York, 1996.
[23] Z. Fan and P. Mars, Access ow control scheme for ATM network using neural
network-based tra¢ c prediction,IEE Proc. Commu., vol. 144, no 5, pp.295-
300, Oct. 1997.
[24] M. R. Pickering and J. F. Arnold, A perceptually e¢ cient VBR rate control
algorithm, IEEE Trans. Image Processing, vol. 3, no. 5, pp. 527-532, Sept.
1994.
[25] A. A. Tarraf, I. W. Habib, and T. N. Saadawi, A novel neural network tra¢ c
enforcement mechanism for ATM network,IEEE J. Select. Areas Commun.,
vol. 12, no. 6, pp. 1088-1095, Aug. 1994.
[26] N. M. Mara
h, Y. Q. Zhang, and R. L. Pickholtz, Modeling and queuing
analysis of variable-bit-rate coded video sources in ATM network,IEEE Trans.
Circuit Sept. Video Technol., vol. 4, no. 2, pp. 121-128, Apr. 1994.
[27] V. Catanaia, G. Ficili, S. Palazzo, and D. Panno, A comparative analysis of
fuzzy versus conventional policing mechanisms for ATMnetworks,IEEE/ACM
Trans. Networking, vol. 4, no. 3, pp. 449-459, Jun. 1996.
[28] P. Chemuil, J. Kbalfet, and M. Lebourgges, A fuzzy control approach for
adaptive tra¢ c routing,IEEE Commun. Mag., vol. 33, no. 7, pp. 70-76, Jul.
1995.
[29] On-line homepage: http://www-info3.informatik.uni-wuerzburg.de/MPEG/.
[30] F. H. P. Fitzek and M. Reisslein, MPEG-4 and H.263 video traces
for network performance evaluation, IEEE Network, vol.15, no. 6, Nov.-
Dec. 2001, pp. 40-54. Traces available at homepage: http://www-tkn.ee.tu-
berlin.de/research/trace/trace.html and fttp://www.eas.asu.edu/trace.
[31] H. Demuth, M. Beale, and M. Hagan, Neural Network Toolbox 5: Users Guide,
The MathWorks, 2007.
[32] H. Li, G. Liu, Z. Zhang, and Y. Li, Adaptive scene-detection algorithm for
VBR video stream,IEEE Trans. Multimedia, vol. 6, no. 4, pp. 624-633, August
2004.
[33] S. G. Wang, H. Y. Yeh, and P. N. Roschke, Robust control for structural
systems with parametric and unstructured uncertainties, Proceedings of the
American Control Conference, pp. 1109-1114, June 25-27, 2001.
[34] T. Shen and K. Tamura, Robust H1 control of uncertain nonlinear system via
state feedback,IEEE Transactions on Automatic Control, vol. 40, no. 4, pp.
766-769, April 1995.
[35] B. S. Chen, C. S. Tseng, and H. J. Uang, Mixed H2=H1 fuzzy output feedback
control design for nonlinear dynamic systems: an LMI approach,IEEE Trans.
Fuzzy Systems, vol. 8, no. 3, pp. 249-265, June 2000.
[36] M. Safonov and M. Athans, Robustness and computational aspects of non-
linear stochastic estimators and regulators,IEEE Transactions on Automatic
Control, vol. 23, no. 4, pp.717-725, Aug. 1978.
[37] F. Yang, Z. Wang, and D.W.C. Ho, Robust mixed H2=H1 control for a class
of nonlinear stochastic systems,IEE Proceedings, Control Theory and Appli-
cations, vol. 153, no. 2, pp. 175-184, March 2006.
[38] T. J. Tarn and Y. Rasis, Observers for nonlinear stochastic systems,IEEE
Trans. Automatic Control, vol. 21, no. 4, pp.441-448, Aug. 1976.
[39] C. D. Charalambous and S. M. Diouadi, Stochastic nonlinear minimax
ltering
in continuous-time,Proceedings of the 40th IEEE Conference on Decision and
Control, vol. 3, pp. 2520-2525, Dec. 2001.
[40] W. Zhang and B. S. Chen, Robust H1
ltering for nonlinear stochastic sys-
tems,IEEE Trans. Signal Processing, vol. 53, no. 2, pp. 589-598, Feb. 2005.
[41] F. Carravetta and G. Mavelli, Asymptotic properties of an output-feedback
suboptimal control scheme for stochastic bilinear systems,Proceeding of the
2004 American Control Conference, Boston, Massachusetts, pp. 3146-3151,
June 30-July 2, 2004.
[42] W. H. Chen, Y. T. Chang, and B. S. Chen, Nonlinear stochastic H2=H1 output
feedback control under state-dependent noise,IEEE Conference on Decision
and Control, pp. 302-307, Dec. 2006.
[43] T. Takagi and M. Sugeno, Fuzzy identi
cation of systems and its applications
to modeling and control,IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no.
1, pp. 116-132, Jan. 1985.
[44] C. S. Tseng, Robust Fuzzy Filter Design for a Class of Nonlinear Stochastic
Systems,IEEE Trans. Fuzzy Systems, vol. 15, no. 2, pp. 261-274, April 2007.
[45] L. Hu, W. Zhao, and S. Shao, Robust stochastic stabilization and robust H1
control for uncertain stochastic fuzzy systems,The 14th IEEE International
Conference on Fuzzy Systems, pp. 254-259, May 2005.
[46] S. C. Chen, Robust and Optimal Estimation for Uncertain Stochastic Fuzzy
T-S Models, Master thesis, Department of Electrical Engineering, Chung Hua
University, August 2007.
[47] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequal-
ities in System and Control Theory, Philadelphia, PA, SIAM, 1994.
[48] R. Z. Hasminski¼¬, Stochastic Stability of Di¤erential Equations, Netherlands,
International Publishers B. V. ,1980.