| 研究生: |
陳思齊 Chen Ssu Chi |
|---|---|
| 論文名稱: |
高強度鋼筋混凝土連接梁反覆載重行為之研究 Study on Cyclic Behavior of High Strength Reinforced Concrete Coupling Beams |
| 指導教授: |
洪崇展
李顯智 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 255 |
| 中文關鍵詞: | 高強度鋼筋混凝土 、韌性式剪力連接梁系統 、圍束鋼筋設計 、剪力強度 、位移能力 、鋼纖維 |
| 外文關鍵詞: | high-strength reinforced concrete, ductile coupled shear walls, the design of conefinement, shear strength, ductile, steel fiber |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
韌性式剪力連接梁系統能有效增加結構物於水平向之承載能力,使其在側向更具韌性,故常使用於中高樓層之建築做為核心抗側力系統。相較於傳統剪力牆系統,韌性式剪力連接梁系統更可以滿足空間使用上之需求。韌性式剪力連接梁系統之韌性行為須建立在連接梁之變形能力上,而過去的研究顯示,若要使剪力連接梁具備良好的位移能力,則須在構件發生大位移時,仍能提供足夠之抗剪強度以維持其剪力強度,將試體之破壞型式由較為安全的撓曲破壞所控制。因此本研究主要經由實驗與分析方式,來探討在高剪力強度的情況下,以改變試體之圍束行為,以及連接梁強度與混凝土強度比值,檢驗與觀察其對於試體之剪力強度與位移能力會有何種影響。
本實驗共設計四座跨深比為2之連接梁試體,經由雙曲率與零軸壓之狀態下進行反覆載重試驗,以混凝土強度、鋼筋之圍束形式與添加鋼纖維與否做為設計參數,探討新型高強度材料應用於連接梁之情形,並針對美國規範ACI318-14對於連接梁之標稱剪力強度進行探討與檢核。從實驗結果中顯示,剪力強度與混凝土強度比值過高,可能導致混凝土發生過早之破壞。圍束行為的不同將會影響試體之破壞行為。於剪力連接梁中添加鋼纖維,能有效改善試體之強度與位移行為。
Ductile coupled shear walls, an efficient lateral-force-resisting system, which used as the primary lateral force resisting system for high-rise buildings. It different from the traditional shear wall system, this coupled wall system satisfies better the demand of space requirement. The ductility of coupled shear wall requires good deformation capacity of the coupling beams. According to previous researches, adequate shear strength is indispensable for the development of the ductility of coupling beams. To make sure the coupling beams distorted by flexural mode,it is important to matain the coupling beams strength on large deformation. Therefore this research focuses on the effects of shear strength and deformation capacity of coupling beams with the variation of the design of confinemet, and the ratio of shear strength to concrete strength.
Four full-scale specimens were tested to study the effects of behavior of coupling beams under different property of material (concrete strength), design of conefinement,add steel fiber . This research discusses the application of the new high-strength materials to the coupling beams, and checks the the nominal shear strength of the coupling beams according to ACI318-14. Test results indicate that, when the shear strength and concrete strength ratio is too high, may lead to premature destruction of concrete. Confinment behavior will affect the destruction of the specimen. The addition of steel fiber to the coupling beams can effectively improve the strength and displacement behavior of the specimen.
Fintel, M., “Shear Walls – An Answer for Seismic Resistance?” Concrete International, American Concrete Institute, 1991, pp. 48-53.
Lequesne, R. D., ”Behavior and Design of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled-Wall Systems,” Doctoral Dissertation, University of Michigan Ann., Michugan, 2011, 1 pp
洪崇展, 盧威廷, 鄭宇翔. 耦合結構牆性能化抗震設計法. 結構工程. 32(1), pp. 49- 70, 2017
C.-C. Hung, H. Li, H.-C. Chen. High-strength Steel Reinforced Squat UHPFRC Shear Walls: Cyclic Behavior and Design Implications. Engineering Structures. 141, pp.59-74, 2017.
C.-C. Hung, W.-T. Lu. A Performance-Based Design Method for Coupled Wall Structures. Journal of Earthquake Engineering. 21(4), pp.579-603, 2017.
C.-C. Hung, W.-T. Lu. Tall hybrid coupled structural walls: seismic behavior and design suggestions. International Journal of Civil Engineering. 2017.
C.-C. Hung, W.-T. Lu. Towards achieving the desired seismic performance for hybrid coupled structural walls. Earthquakes and Structures. 9(6), pp.1251-1272, Nov, 2015
洪崇展, 盧威廷. 複合耦合結構牆抗震系統之設計與非線性側推分析. 結構工程. 29(3), pp. 40- 58, 2014
C.-C. Hung. Modified Full Operator Hybrid Simulation Algorithm and its Application to the Seismic Response Simulation of a Composite Coupled Wall System. Journal of Earthquake Engineering. 16(6), pp.759-776, 2012
ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), AmericanConcrete Institute, Farmington Hills, 2014.
Wallace, J. W.,“Modeling Issue for Tall Reinforced Concrete Core Wall Buildings”, Structural Design of Tall and Special Buildings, Vol. 16, No. 5, 2007 pp. 615-632.
Naaman, A.E.,“High-Performance Fiber-Reinforced Cement Composites”, Concrete Structures for the Future, IABSE Symposium, Zurich, pp.371-376, 1987.
C.-C. Hung, Y.-F. Su, Y.-M. Su. Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 2017.
洪崇展, 戴艾珍, 顏誠皜, 溫國威, 張庭維. 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利. 44(1), pp. 33-51, 2017
C.-C. Hung, Y.-F. Su, H.-H. Hung. Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites 80, pp.200-209, 2017.
C.-C. Hung, C.-Y. Chueh. Cyclic Behavior of UHPFRC Flexural Members Reinforced with High-Strength Steel Rebar. Engineering Structures. 122, pp.108-120, 2016.
C.-C. Hung, Y.-F. Su. Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction & Building Materials. 118, pp. 194-203, 2016.
C.-C. Hung, Y.-S. Chen. Innovative ECC Jacketing for Retrofitting Shear-Deficient RC Members. Construction & Building Materials. 111, pp. 408-418, 2016.
C.-C. Hung, W.-M. Yen, K.-H. Yu. Vulnerability and Improvement of Reinforced ECC Flexural Members under Displacement Reversals: Experimental Investigation and Computational Analysis. Construction & Building Materials. 107, pp.287-298, March, 2016.
C.-C. Hung, W.-M. Yen. Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering. 79, pp.506-512, 2014
C.-C. Hung, Y.-F. Su. On Modeling Coupling Beams Incorporating Strain-hardening Cement-based Composites. Computers and Concrete. 12(4), pp. 243-259, 2013
C.-C. Hung, Y.-F. Su, K.-H. Yu. Modeling the Shear Hysteretic Response for High Performance Fiber Reinforced Cementitious Composites. Construction and Building Materials. 41, pp.37-48, 2013
C.-C. Hung, S.-H. Li. Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites. Composites Part B: Engineering. 45, pp.1441-1447, 2013
洪崇展, 曾柏庭, 游文吉, 黃忠良. 使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性. 結構工程. 26(4), pp. 3-16, 2011
C.-C. Hung, S. El-Tawil. Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions. ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507, 2011
C.-C. Hung, S. El-Tawil. Hybrid Rotating/Fixed-Crack Model for High Performance Fiber Reinforced Cementitious Composites. ACI Materials Journal. 107(6), pp.569-577, 2010
Barney, G. B.; Shiu, K. N.; Rabbat,B.G.;Fiorato,A.E.;Russell, H. G.; and Corley, W. G., Behavior of Coupling Beamsunder Load Reversals (RD068.01B), Portland Cement Association,Skokie, IL, 1980.
Paulay, T., and Binney, J.,“Diagonally Reinforced Coupling Beams of Shear Walls”, Shear in Reinforced Concrete, SP-42, V. 2, American Concrete Institute, Farmington Hills, Mich.1974, pp. 579-598.
ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99), American Concrete Institute, Farmington Hills, 1999.
Moehle, J. P., Ghodsi, T., Hooper, J. D., Fields, D. S., Gedhada, R., (2001). “Seismic Design of Cast-in-place Concrete Special Structural Walls and Coupling Beams: a Guide for Practicing Engineers, ” NEHRP Seismic Design Technical Brief No. 6, produced by the NEHRP Consultants Joint Venture, a partnership of the Applied Technology Council and the Consortium of Universities for Research in Earthquake Engineering, for the National Institute of Standards and Technology, Gaithersburg, MD, NIST GCR 11-917-11REV-1.
Harries, K. A., Fortney, P. J., Shahrooz, B. M., and Brienen, B. J., “Parctical Design of Diagonally Reinforced Concrete Coupling Beams-Critical Review of ACI 318 Requirements,” ACI Structural Journal, Vol.102, No.6, November-December 2005.
ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute, Farmington Hills, 2005.
ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), American Concrete Institute, Farmington Hills, 2008.
Canbolat, B. A., Parra-Montesinos, G. J., and Wight, J. K., Experimental Study on Seismic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beams, ACI Structural J., Vol.102, 2005 pp. 159-166.
Lequesne, R.D., Wight, J.K., and Parra-Montesinos, G.J., “High-Performance Fiber-Reinforced Concrete Coupled-Wall Systems: Design and Behavior”, Proceedings of 14 ECEE, 2010.
Parra-Montesinos, G.J., “High-Performance Fiber-Reinforced Cement composites: An Alternative for Seismic Design of Structures”, ACI Structural Journal, September-October, 2005.
鄭志宏,”鋼筋混凝土連接梁反覆載重測試之研究”,碩士論文,國立台灣大學土木工程系,台北,民國99年。
王亭惟,”鋼筋混凝土連接梁耐震鋼筋配置之研究”,碩士論文,國立台灣大學土木工程系,台北,民國100年。
張于軒,”鋼筋混凝土剪力牆連接梁鋼筋配置之研究”,碩士論文,國立台灣大學土木工程系,台北,民國101年。
蔡尚錡,”鋼筋混凝土剪力牆連接梁耐震行為之研究”,碩士論文,國立台灣大學土木工程系,台北,民國102年。
ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11), American Concrete Institute, Farmington Hills, 2011.
楊善淳,”高強度鋼筋混凝土剪力牆連接梁耐震行為之研究”,碩士論文,國立台灣科技大學土木與防災研究所,台北,民國102年。
林秉誼,”鋼筋混凝土剪力牆連接梁耐震配筋之研究”,碩士論文,國立台灣大學土木工程系,台北,民國103年。
吳仲凱,”高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究”,碩士論文,國立中央大學土木工程系,桃園,民國105年。
Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting SfearStrengths of Interior Reinforceed Concreat Beam-Column Joint forSeismic Resistance”, ACI Structural Journal, Vol. 97, No 1, pp. 35-44.January-February 2000.
李宏仁、黃世建,「鋼筋混凝土結構D區域之剪力強度評估-軟化壓拉桿模型簡算法之實例應用」,結構工程,第十七卷,第四期,第53-70頁,2002。
Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions by Softened Strut-and Tie Model”, Journal of Structural Engineering, ASCE, Vol. 128, December 2002, pp. 1519-1526.
Saha ̈fer, K., “Strut-and-Tie Models for the Design of Structural Concrete”, Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Taiwan 1996, pp. 140.
林宜靜,「鋼筋混凝土剪力牆連接梁之剪力強度行為預測研究」,碩士論文,國立台灣大學土木工程系,台北,民國 101 年。
ACI Committee 374, “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary,” American Concrete Institute, Farmington Hills, 2005.
Hakuto S., Park R., Tanaka H., ―Seismic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details, ”ACI Structural Journal, 2000, 97(1): 11-25.
劉建宏,”鋼筋混凝土連接梁在往覆水平載重下有/無軸向束制之影響”,碩士論文,國立台灣科技大學營建工程系,台北,民國103年。
Sang Whan Han, Chang Seok Lee, Myoungsu Shin, and Kihak Lee, “Cyclic Performance of Precast Coupling Beams with Bundled Diagonal Reinforcement”, Engineering Structures 93, June 2015, pp. 142-151