跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林天鈺
Tian-Yu Lin
論文名稱: 使用同步輻射X光掃描研究鎳鋁合金的微量鐵元素添加對機械性能之影響
Using Synchrotron Radiation Mapping to Investigate the Iron-addition Effects on the Nickel-Aluminide Alloys
指導教授: 黃爾文
E-Wen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 99
中文關鍵詞: X光繞射硬度測試塑性型變區
外文關鍵詞: X-ray diffraction, hardness test, plastic zone size
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳基材料與大部分的材料一樣,有非常多的應用,但也有其限制。鎳鋁材料是已經廣泛應用且技術成熟的其中一種合金材料,但是仍然有兩大限制:室溫之下的延展性短缺以及高溫之下的抗潛變強度尚須加強,而探討延展性如何變化以及驗證其他相關性質即是本文主要目的。

    本研究中使用的三種材料皆以鎳金屬為基材,有等計量比鎳鋁合金和分別添加鐵0.25%以及1%的鎳鋁合金,添加鐵元素之後會對材料的微結構產生變化,進而改變巨觀的機械性質,連結微結構與機械性質之間的關係,為此實驗設計的出發點。本研究分別使用硬度測試儀以及同步輻射X光繞射,硬度測試儀與一般機械測試原理相似,可以了解材料的機械性質,同步輻射則提供了穿透式的X光繞射圖譜,分析可得材料內部的訊息。材料在進行兩個實驗之前,皆會經過研磨以及拋光的處理,之後再進行硬度測試做應變,在材料上產生應變,在同步輻射X光繞射實驗時,透過瞄準該應變區域,達到比較應變前後的差異。
    經過兩種實驗分析後的結果,對鎳鋁合金而言,添加鐵元素,會使鎳鋁合金有軟化的作用,但是材料的性質並不會隨添加鐵元素之量增加而無限改善,鐵元素添加到一定的量之後,材料的性質即達到最佳化效果,所以推測材料內部已經受到析出或組成的影響,並進一步造成機械性質的改變。從同步輻射的繞射結果也證明了隨著鐵元素含量的增加,會伴隨著塑性變形區的擴張,但是同樣添加鐵元素的量達到一定值之後,材料性質會停止變化並開始下降。此研究中使用的分析掃描測試方法,對塑性型變區有辨識的能力,並更具有客觀性。


    Like most other intermetallics, unalloyed Nickel Aluminide systems have many important applications but also lack the ductility at room temperature. In this study, three kinds of Nickel Aluminide alloys were prepared with different Fe content (0, 0.25, and 1 atomic percentage respectively). We applied indentation to investigate the mechanical performance of the alloys. The deformed areas around the indentation are investigated using the synchrotron x-ray diffraction to map the microstructure distribution of the alloys. After mapping a five by five points, each point aparts 100μm, the distribution of the lattice-strain, diffraction intensity, and peak width of different phases are revealed.

    目錄 摘要 I Abstract III 致謝 IV 目錄 VI 圖次 IX 表次 XII 第一章 緒論 1 1-1研究背景 1 1-2科學議題 2 1-3研究動機與目的 3 第二章 材料介紹 4 2-1超合金 4 2-1-1鎳與鎳基合金 4 2-1-2鎳鋁合金 6 2-1-3物理與化學性質 8 2-2機械性質改變 10 2-2-1強化機制 10 2-2-2添加第三元素 11 第三章 實驗 14 3-1實驗設計 14 3-2硬度測試 16 3-3維氏微硬度測試 18 3-4同步輻射實驗 20 3-4-1繞射原理 21 3-4-2同步光源 23 第四章 數據分析與討論 24 4-1軟體使用 24 4-2數據討論 25 4-2-1硬度數據討論 25 4-2-2同步輻射繞射數據討論(BL01) 28 4-2-3同步輻射繞射以及小角散射數據討論(BL23) 31 4-3 金相量測 34 4-4 推測結果 37 第五章 結論 41 參 考 文 獻 70 附錄 73 實驗討論 78

    參 考 文 獻
    1. Callister WD, Rethwisch DG. Materials science and engineering: an introduction. 2007.
    2. Cutler CP. nickel nickel everywhere. Materials World. 1998.
    3. Darolia R. NiAl alloys for high-temperature structural applications. JOM. 1991;43(3):44-49.
    4. Ishida K, Kainuma R, Ueno N, Nishizawa T. Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metallurgical and materials Transactions A. 1991;22(2):441-446.
    5. Darolia R, Lahrman D, Field R. The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl. Scripta Metallurgica et Materialia;(United States). 1992;26(7).
    6. Baker I, Nagpal P, Liu F, Munroe P. The effect of grain size on the yield strength of FeAl and NiAl. Acta metallurgica et materialia. 1991;39(7):1637-1644.
    7. Schneibel J, Darolia R, Lahrman D, Schmauder S. Fracture morphology of NiAl single crystals tested in tension. Metallurgical and Materials Transactions A. 1993;24(6):1363-1371.
    8. Miracle D. Overview No. 104 the physical and mechanical properties of NiAl. Acta Metallurgica et Materialia. 1993;41(3):649-684.
    9. Pike L, Chang Y, Liu C. Solid-solution hardening and softening by Fe additions to NiAl. Intermetallics. 1997;5(8):601-608.
    10. Fine M, Vaynman S, Isheim D, Chung Y-W, Bhat S, Hahin C. A New Paradigm for Designing High-Fracture-Energy Steels. Metallurgical and Materials Transactions A. 2010;41(13):3318-3325.
    11. Teng Z, Miller MK, Ghosh G, et al. Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography. Scripta Materialia. 2010;63(1):61-64.
    12. Schulson E, Barker D. A brittle to ductile transition in NiAl of a critical grain size. Scripta metallurgica. 1983;17(4):519-522.
    13. Nagpal P, Baker I. The effect of grain size on the room-temperature ductility of NiAl. Scripta Metallurgica;(United States). 1990;24(12).
    14. Xu S, Tyson W. Nickel in structural alloys. Canadian metallurgical quarterly. 2002;41(2):219-230.
    15. Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K. Ductility enhancement by boron addition in Co–Al–W high-temperature alloys. Scripta Materialia. 2009;61(6):612-615.
    16. Sheng L, Zhang W, Guo J, Yang F, Liang Y, Ye H. Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound. Intermetallics. 2010;18(4):740-744.
    17. Ren W, Guo J, Li G, Zhou J. Effect of Nd on microstructure and mechanical properties of NiAl-based intermetallic alloy. Materials Letters. 2003;57(8):1374-1379.
    18. Aghajanian MK, Macmillan N, Kennedy CR, Luszcz S, Roy R. Properties and microstructures of Lanxide® Al2O3-Al ceramic composite materials. Journal of materials Science. 1989;24(2):658-670.
    19. Cotton J, Noebe R, Kaufman M. The effects of chromium on NiAl intermetallic alloys: Part I. microstructures and mechanical properties. Intermetallics. 1993;1(1):3-20.
    20. Tuan W, Brook R. The toughening of alumina with nickel inclusions. Journal of the European Ceramic Society. 1990;6(1):31-37.
    21. Chou W, Tuan W. Toughening and strengthening of alumina with silver inclusions. Journal of the European Ceramic Society. 1995;15(4):291-295.
    22. Oh S-T, Sekino T, Niihara K. Fabrication and mechanical properties of 5 vol% copper dispersed alumina nanocomposite. Journal of the European Ceramic Society. 1998;18(1):31-37.
    23. Trusty P, Yeomans J. The toughening of alumina with iron: effects of iron distribution on fracture toughness. Journal of the European Ceramic Society. 1997;17(4):495-504.
    24. Tuan W. Toughening alumina with nickel aluminide inclusions. Journal of the European ceramic society. 2000;20(7):895-899.
    25. Tabor D. The Hardness of Metals. 2000.
    26. Will G. Powder Diffraction: The Rietveld method and the two-stage method: Springer; 2006.
    27. Liu Z, Guo J, Zhou L, Hu Z, Umemoto M. Mechanical alloying synthesis and structural characterization of ternary Ni-Al-Fe alloys. Journal of materials science. 1997;32(18):4857-4864.
    28. Ahn J-H, Kwon D. Derivation of plastic stress-strain relationship from ball indentations: Examination of strain definition and pileup effect. JOURNAL OF MATERIALS RESEARCH-PITTSBURGH-. 2001;16(11):3170-3178.
    29. Giannakopoulos A, Larsson P-L, Vestergaard R. Analysis of Vickers indentation. International journal of Solids and Structures. 1994;31(19):2679-2708.
    30. Weihs T, Zinoviev V, Viens D, Schulson E. The strength, hardness and ductility of Ni< sub> 3</sub> Al with and without boron. Acta Metallurgica. 1987;35(5):1109-1118.
    31. Hughes G, Smith S, Pande C, Johnson H, Armstrong R. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scripta metallurgica. 1986;20(1):93-97.
    32. Zeng K, Chiu C. An analysis of load–penetration curves from instrumented indentation. Acta materialia. 2001;49(17):3539-3551.
    33. Pike L, Chang Y, Liu C. Point defect concentrations and hardening in binary B2 intermetallics. Acta materialia. 1997;45(9):3709-3719.
    34. Westbrook JH. Intermetallic compounds: Their past and promise. Metallurgical Transactions A. 1977;8(9):1327-1360.

    QR CODE
    :::