| 研究生: |
李興傑 Sing-jie Lee |
|---|---|
| 論文名稱: |
環烯烴高分子質子傳導膜之開發 Cyclo-olefin copolymers (COC) containing pendant ion as proton exchange membrane (PEM) |
| 指導教授: |
陳銘洲
Ming-chou Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 甲醇直接進料燃料電池 、甲醇滲透率 、吸水膨潤性 、開環歧化聚合反應 、釕金屬觸媒 、鎳金屬觸媒 、環烯烴 、磺酸根 、聚醚醚酮 、質子傳導膜 、質子導電度 |
| 外文關鍵詞: | Ring Opening Metathesis Polymerization, ROMP, Ru catalyst, Methanol Cross-over, proton exchange membranes, Direct Methanol Fuel Cell, Swelling test, Nafion, Proton conductivity, organic Ni catalyst, Norborene monomer, sulfonated, cyclo-olefin based polymer |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇主要研究利用Diels-Alder之有機反應,引進具磺酸根類之官能基於環烯烴 (NB) 之單體上,目前已經成功的合成開發多種具磺酸根衍生物之環烯烴單體及可調控性質之環烯烴單體,並合成聚合所需之鎳金屬觸媒。利用鎳金屬觸媒催化或自由基進行環烯烴單體之聚合反應,進而構建具質子傳導特性與親疏水相 (兩相) 之共聚團鏈高分子 (PNB)。
亦可用釕金屬觸媒進行這類單體之開環歧化聚合反應 (ROMP) 得到新一類具磺酸根官能基環烯烴高分子 (PNBRu),且可利用此一類高分子 (PNBRu) 與無機交聯劑進行共聚交聯,或與具高支鏈結構 (hyper branch architecture) 雙馬來醯亞胺 (mBMI) 進行混摻共聚 (PNB-BMI),成功開發新一類型的質子傳導膜材料。
我們亦成功開發具雙鍵之環烯烴 (NB) 於 SPEEK高分子,並進行其交聯聚合以得新穎的可交聯之PNB-SPEEK,以改善目前SPEEK類膜材的高吸水澎潤性而無法於高溫下使用之缺點。
之後進行材料的鑑定及其電性、膜之吸水性、及膨潤度等之特性測量,然後經由這些初步的傳導膜之各項測試結果,我們將再進行多項高紛子製備的調控。期望此類聚合物於成膜後 (質子傳導膜;PEM) 可以適用於高溫甲醇直接進料之燃料電池 (DMFC),並期達到所需求的高質子導電度 (具良好的質子傳遞性) 及低甲醇滲透率。最後,我們將依其所得之結果來開發更新穎之環烯烴高分子的材料。
Via the Diels-Alder reaction, a series of new sulfonated noborene based monomers will be developed. To polymerize these new monomers, the organic Ni catalyst will be synthesized and their polymerization behaviors will be examined. Then, the performances of the proton exchange membranes (PEM) derived from the above new sulfonated cyclo-olefin based polymers will be investigated. The copolymerization of these new monomers catalyzed by the Ni catalyst to produce the block copolymer will be explored. By employing the ring-open metathesis polymerization (ROMP) Ru catalyst, new type of sulfonated cyclo-olefin based polymers will be generated and the new membranes properties will be evaluated. To increase the mechanical strength and to decrease the swelling of fuel cell membranes, cross-linking of these new polymers by radical polymerization procedure will be tested. The polymerization conditions, such the polymerization temperature, monomers uptake ratio, polymerization solvent, will be explored to derive the relationship of the condition modification vs. the corresponding membranes’ performance.Hopefully, with the introduction of the new type of sulfnated cyclo-olefin (norborene) polymer, a new type of proton exchange membranes with higher proton conductivity, lower methanol cross-over, lower water swelling, and higher thermal and chemical stability than the common used Nafion (produced by Dupont) will be developed to satisfy the desired specifications for direct methanol fuel cells (DMFC).
1. (a) Elabd, Y. A.; Napadensky, E.; Walker, C. W.; Winey, K. I. Macromolecules; 2006; 39(1); 399-407. (b) Tan, S.; Tieu, J. H.; Belanger, D. J. Phys. Chem. B.; 2005; 109(29); 14085-14092. (c) K.; Tazaki, T.; Matsubara, R.; Nishide, H. Ind. Eng. Chem. Res.; 2005; 44(23); 8626-8630. (d) Arcella, V.; Troglia, C.; Ghielmi, A. Ind. Eng. Chem. Res.; 2005; 44(20); 7646-7651. (e) Chen, S.-L.; Benziger, J. B.; Bocarsly, A. B.; Zhang, T. Ind. Eng. Chem. Res.; 2005; 44(20); 7701-7705. (f) Chikashige, Y.; Chikyu, Y.; Miyatake, K.; Watanabe, M. Macromolecules; 2005; 38(16); 7121-7126. (g) Ames, R. L.; Way, J. D.; Bluhm, E. A.; Knauss, D. M.; Singh, R. P.; Hensley, J. E. Ind. Eng. Chem. Res.; 2005; 44(10); 3672-3680. (h) Chen, Y. L.; Meng, Y. Z.; Hay, A. S. Macromolecules; 2005; 38(9); 3564-3566. (i) Gao, Y.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Li, X.; Kaliaguine, S. Macromolecules; 2005; 38(8); 3237-3245.
2. (a) Rubatat, L.; Shi, Z.; Diat, O.; Holdcroft, S.; Frisken, B. J. Macromolecules; 2006; 39(2); 720-730. (b) Tan, S.; Belanger, D. J. Phys. Chem. B.; 2005; 109(49); 23480-23490. (c) Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L. S.; Choe, E.-W.; Rogers, D.; Apple, T.; Benicewicz, B. C. Chem. Mater.; 2005; 17(21); 5328-5333. (d) Zhang, Y.; Erkey, C. Ind. Eng. Chem. Res.; 2005; 44(14); 5312-5317. (e) Park, H.; Kim, Y.; Hong, W. H.; Choi, Y. S.; Lee, H. Macromolecules; 2005; 38(6); 2289-2295. (f) Rhee, C. H.; Kim, H. K.; Chang, H.; Lee, J. S. Chem. Mater.; 2005; 17(7); 1691-1697. (g) Deng, W.-Q.; Molinero, V.; Goddard, W. A., III J. Am. Chem. Soc.; 2004; 126(48); 15644-15645. (h) Holmberg, S.; Holmlund, P.; Nicolas, R.; Wilen, C.-E.; Kallio, T.; Sundholm, G.; Sundholm, F. Macromolecules; 2004; 37(26); 9909-9915.
3. (a) Michael A. Hickner, Hossein Ghassemi, Yu Seung Kim, Brian R. Einsla, James
E. McGrath. Chem. Rev.; 2004; 104, 4587- 4612. (b) Ibrahim, S. M.; Price, E. H.;
Smith, R. A., of E. I. du Pont de Nemours. Proc. Electrochem. Soc. 1983, 83-6. (c)
Resnick, P. R.; Grot, W. G., of E. I. du Pont de Nemours and Company, Wilmington,
DE, Sept 12, 1978; U.S. Patent 4,113, 585.
4. 新穎質子交換膜, 吳千舜, 2004, 國立中央大學化學研究所碩士論文
5. 資料來源:SRI/PEP 223, Jul 1998、www.teamzeon.com/docs/COP616_files/frame.htm/化工所ITIS 計畫整理
6. Toyota Central Research & Development Lab Inc, Japanese published Patent
Application No.2001-019723.
7. Ki Hong Park, Robert J. Twieg, R. Ravikiran, Larry F. Rhodes,Robert A. Shick,
Diego Yankelevich, and Andre Knoesen. Macromolecules 2004, 37, 5163-5178.
8. Zhou, Z.; Dominey, R. N.; Rolland, J. P.; Maynor, B. W.; Pandya, A. A.; DeSimone,
J. M. J. Am. Chem. Soc. 2006; ASAP Article
9.(a) Ravikiran, R; Rhodes, L. F.; Bell, A.; Jayaraman, S.; Lipian, J.-H.; Shick, R. A .
US Patent 2005, 0019639. (b) K. F. Ho, Dennis C. W. Fung, W. Y. Wong, W. H.
Chan* and Albert W. M. Lee. Tetrahedron Letters 2001, 42, 3121. (c) La sheng
Jiang, Wing Hong Chan, Albert W. M. Lee. Tetrahedron 1999, 55, 2245. (d) William
E. Truce, Fred D. Hoerger J. Am. Chem. Soc.; 1954; 76(21); 5357.
10. Kerstin Mu¨ ller, Stefan Kreiling, Kurt Dehnicke, Ju¨rgen Allgaier, Dieter Richter,
Lewis J. Fetters, Youngsuk Jung,Do Y. Yoon, Andreas Greiner. Macromol. Chem.
Phys. 2006, 207, 193–200.
11. (a) Shaw-Tao Lin, Richard N. Narske, and Kenneth J. Klabunde. Organometallics
1985, 4, 571-574. (b) Michael M. Brezinski and Kenneth J. Klabunde.
Organometallics 1983, 2, 1116-1123. (c) Narayanankutty Pariyadath, W. E. Newton,
Edward 1. Stiefel. J. Am. Chem. Soc. 1976, 98, 5390. (d) Robert G. Gastinger, Bruce
B. Anderson, and Kenneth J. Klabunde. J. Am. Chem. Soc. 1980,102, 4959-4966. (e)
Rhodes, L. F.; Bell, A.; Jayaraman, S.; Lipian, J.-H.; Goodall,B. L.; Shick, R. A. US
Patent 6,232,417, 2001. (f) M.Bader; Bruce B. Anderson; Kenneth J. Klabunde.
Inorganic Syntheses 1979,19, 72.
12. B. B. Anderson, M. Bader, and Kenneth J. Klabunde. Inorganic Syntheses 1979,
19, 72-74.
13. (a) Tina M. Trnka, Robert H. Grubbs. Acc. Chem. Res. 2001, 34, 18-29. (b)
SonBinh T. Nguyen, Lynda K. Johnson, and Robert H. Grubbs J. Am. Chem. Soc.
1992, 114, 3974-3975. (c) Bruce M. Novak and Robert H. Grubbs J. Am. Chem. Soc.
1988, 110, 7542-7543. (d) SonBinh T. Nguyen'' and Robert H. Grubbs J. Am. Chem.
Soc. 1993,115, 9858-9859. (e) Oren A. Scherman, Isaac M. Rutenberg, and Robert
H. Grubbs. J. Am. Chem. Soc. 2003, 125, 8515-8522. (f) Todd R. Younkin, Eric F.
Connor, Jason I. Henderson, Stefan K. Friedrich, Robert H. Grubbs, Donald A.Bansleben. SCIENCE 2000, 287, 460.
14. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater. 2003, 15(26),
4896-4915.