跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫綱
Gang Sun
論文名稱: An optimal choice of reference for the quasi-local energy and angular momentum
指導教授: 聶斯特
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 52
中文關鍵詞: 哈氏量的邊界項準局域能量準局域角動量四維等度規配合
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 只要提供一個合適的演化向量和適當的背景幾何,哈氏量的邊界項能給出引力場準局
    域的值。本文的目標在建構一套最佳化的辦法來確定適當的背景值。首先將封閉二維面
    上度規的十個分量,從動力學時空等度規地嵌入到在背景幾何上, 然後透過要求準局域
    能量取極值的方法來確定適當的背景值。這套辦法也同時決定了演化向量的選取。我們
    以軸對稱的動力學時空,針對克爾度規的情況明確地計算了準局域的能量和角動量。


    The boundary term of the gravitational Hamiltonian can be used to give the values
    of the quasi-local quantities as long as one can provide a suitable evolution vector field and an
    appropriate reference geometry. On the two-surface boundary of a region we have proposed using
    four dimensional isometric matching between the dynamic spacetime and the reference geometry
    along with energy extremization to find both the optimal reference matching and the appropriate
    quasi-Killing vectors. Here we consider the axisymmetric spacetime case. For the Kerr metric
    in particular we can explicitly solve the equations to find the best matched reference and quasi-
    Killing vectors. This leads to the exact expression for the quasi-local boundary term and the values
    of our optimal quasi-local energy and angular momentum.

    1 Prelude 1 1.1 Pseudotensor and superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fundamental concepts of quasilocal . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Some applications of quasilocal . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Tidal heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Positivity of the gravitational energy . . . . . . . . . . . . . . . . . . . . 5 1.3.3 The cosmic censorship conjecture . . . . . . . . . . . . . . . . . . . . . 5 2 Conserved quantities in physics 6 2.1 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Conservation quantities in Minkowski space . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Matter field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 10 conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Komar mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 The Covariant Hamiltonian Formalism 12 3.1 From Lagrangian to Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Refine the Hamiltonian boundary term . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Quasilocal flux expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Examples of quasilocal values in different spacetimes . . . . . . . . . . . . . . . 18 3.4.1 asymptotically flat to spatial infinity . . . . . . . . . . . . . . . . . . . . 18 3.4.2 asymptotically flat to null infinity . . . . . . . . . . . . . . . . . . . . . 19 3.4.3 small region limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Remark and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 The optimal Hamiltonian boundary term 23 4.1 The adapted settings to fix reference configuration for several quasilocal expressions 23 4.2 The strategy to optimize reference and evolution vector . . . . . . . . . . . . . . 25 4.2.1 4D isometric embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 How to choose a suitable evolution vector . . . . . . . . . . . . . . . . . 28 4.2.3 Energy extremization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.4 Search the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.5 Examine the critical value . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 Coda 37 5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.1 The Optimal Quasilocal Energy . . . . . . . . . . . . . . . . . . . . . . 37 5.1.2 The Optimal Angular momentum . . . . . . . . . . . . . . . . . . . . . 39 5.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Appendix 45 Bibliography 48

    [1] P. G. Bergmann, R. Thomson, Spin and Angular Momentum in General Relativity, Phys.
    Rev., 89, 400, (1953).
    [2] I. S. Booth, R. B. Mann, Moving observers, nonorthogonal boundaries, and quasilocal energy, Phys. Rev. D, 59, 064021, (1999).
    [3] I. S. Booth, J. D. E. Creighton, Quasilocal calculation of tidal heating, Phys. Rev. D, 62,
    067503, (2000).
    [4] J. D. Brown, J.W. York, Quasilocal energy and conserved charges derived from the gravita-
    tional action, Phys. Rev. D, 47, 1407–1419, (1993).
    [5] J. D. Brown, S. R. Lau, J. W. York, Canonical quasilocal energy and small spheres, Phys.
    Rev. D, 59, 064028, (1999).
    [6] P. T. Chru´sciel, On the relation between the einstein and the komar expression for the energy
    of the gravitational field, Ann. Inst. Henri. Poincaré, 42, 267, (1985).
    [7] S. Deser, J. S. Franklin, D. Seminara, Graviton-Graviton Scattering, Bel-Robinson and En-
    ergy (Pseudo)-Tensors, Class.Quant.Grav., 16, 2815, (1999).
    [8] M. Favata, Energy localization invariance of tidal work in general relativity, Phys. Rev. D,
    63, 064013, (2001).
    [9] Ph. Freud, Über die Ausdrücke der Geasmtenergie und des Gesamtimpulses eines Ma-
    teriellen Systems in der allgemeinen Relativitätstheorie, Ann. Math., 40, 417, (1939).
    [10] G. W. Gibbons, The isoperimetric and Bogomolny inequalities for black holes, in Willmore,
    T.J., and Hitchin, N.J., eds., Global Riemannian Geometry, 194–202, (Ellis Horwood; Halsted Press, Chichester; New York, 1984).
    [11] F.-H. Ho, Quasilocal center-of-mass for GR∥, Ms. Thesis, (National Central University,
    Jung-Li, Taiwan, R.O.C.), (2003), unpublished.
    [12] J. Katz, J. Biˇcák, D. Lynden-Bell, Relativistic conservation laws and integral constraints for
    large cosmological perturbations, Phys. Rev. D, 55, 5957, (1997).
    [13] J. Katz, J. Biˇcák, D. Lynden-Bell, Gravitational energy in stationary spacetimes, Class.
    Quant. Grav., 23, 7111–7127, (2006).
    [14] J. Kijowski, W. M. Tulczyjew, A Symplectic Framework for Field Theories, (Lecture Notes
    in Physics 107, Springer-Verlag, Berlin, 1979).
    [15] J. Kijowski, A Simple Derivation of Canonical Structure and Quasi-local Hamiltonians in
    General Relativity, Gen. Relativ. Grav., 29, 307–43, (1996).
    [16] A. Komar, Covariant conservation laws in general relativity, Phys. Rev., 113, 934–936,
    (1959).
    [17] C. Lanczos, The variational principles of mechanics (University of Toronto Press, Toronto,
    1949).
    [18] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields (Oxford: Pergamon, 1975).
    [19] S. K. Chakrabarti, R. P. Geroch, C. Liang, Timelike Curves of Limted Acceleration in general
    Relativity, J. Math. Phys., 24, 597–598, (1983).
    [20] E. A. Martinez, Quasilocal energy for a Kerr black hole, Phys. Rev. D, 50, 4920, (1994).
    [21] C. Møller, On the Localization of the Energy of a Physical System in the General Relativity,
    Ann. Phys., 4, 347, (1958).
    [22] J. M. Nester, F.-F. Meng, C.-M. Chen, Quasilocal Center-of-Mass, J.Korean Phys.Soc., 45,
    S22–S25, (2004).
    [23] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (San Francisco: Freeman, 1973).
    [24] J. M. Nester, A new gravitation energy expression with simpler positive proof, Phys. Lett. A,
    83, 6, 241–242, (1981).
    [25] W. Israel, J. M. Nester, Positivity of the Bondi gravitational mass, Phys. Lett. A, 85, 259–260.
    (1981).
    [26] C.-C. Chang, The Localization of Gravitational Energy: Pseudotensors and Quasilocal Expressions, MSc. Thesis (National Central University, Chung-li), 1999, unpublished.
    [27] C.-M. Chen, J. M. Nester, R.-S. Tung, Quasilocal energy momentum for gravity theories,
    Phys. Lett. A 203, 5 (1995)
    [28] C.-C. Chang, J. M. Nester, C.-M. Chen, Pseudotensors and Quasilocal Energy-Momentum,
    Phys. Rev. Lett., 83, 1897–901, (1999).
    [29] C.-M. Chen and J. M. Nester, Quasilocal quantities for GR and other gravity theories, Class.
    Quant.Grav., 16, 1279–1304, (1999)
    [30] C.-M. Chen and J. M. Nester, A Symplectic Hamiltonian Derivation of Quasilocal Energy-
    Momentum for GR, Grav. Cosmol., 6, 257, (2000).
    [31] J. M. Nester, General pseudotensors and quasilocal quantities, Class. Quant. Grav., 21,
    S261–S280, (2004).
    [32] C.-M. Chen, J.-L. Liu, J. M. Nester, Quasi-local energy for cosmological models, Mod. Phys.
    Lett. A, 22, 2039–2046, (2007).
    [33] J. M. Nester, L.-L. So, T. Vargas, On the energy of homogeneous cosmologies, Phys. Rev. D,
    78, 044035, (2008).
    [34] J. M. Nester, L.-L. So, H. Chen, Energy-momentum density in small regions – the classical
    pseudotensors Class. Quant. Grav., 26, 085004, (2009).
    [35] R. Beig, N. Ó Murchadha, The Poincaré group as the symmetry group of canonical general
    relativity, Ann. Phys., 174, 463–498, (1987).
    [36] N. Ó Murchadha, L. B. Szabados, K. P. Tod, Comment on “Positivity of Quasilocal Mass”,
    Phys. Rev. Lett., 92, 259001, (2004).
    [37] A. Papapetrou, Einstein’s Theory of Gravitation and Flat Space, Proc. Roy. Irish. Acad. A52,
    11, (1948).
    [38] A. Papapetrou, Lectures on general relativity, (Springer, 1974)
    [39] R. Penrose, Naked singularities, Ann. N.Y. Acad. Sci., 224, 125–134, (1973).
    [40] R. Penrose, Sigularities and Time-Asmmetry in “General Relativity: An Einstein Centenary
    Survey”, ed. S. W. Hawking, andW. Israel, (Cambridge: Cambridge University Press, 1979)
    [41] R. Penrose, Quasilocal mass and angular momentum in general relativity, Proc. Roy. Soc.
    Lond. A, 381, 53, (1982).
    [42] N. P. Knopleva, V. N. Popov, Gauge fields, (San Francisco, 1973)
    [43] P. Purdue, Gauge invariance of general relativistic tidal heating, Phys. Rev. D, 60, 104054,
    (1999).
    [44] T. Regge, C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general
    relativity, Ann. Phys., 88, 286–319, (1974).
    [45] G. Sun, Quasilocal conserved quantities for general relativity in small regions, Ms. Thesis,
    (National Central University, Jung-Li, Taiwan, R.O.C.), (2005), unpublished.
    [46] L.B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in General Relativity, Living Rev Relativity, 12, 4, (2009).
    [47] J. Frauendiener, L. B. Szabados, A note on the post-Newtonian limit of quasi-local energy
    expressions, Class. Quant. Grav., 28, 235009, (2011).
    [48] R. D. Sorkin, Conserved Quantities as Action Variations, Contemporary Mathematics, 71,
    23, (1988).
    [49] M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 5, 2nd edition.
    [50] Y. Shi, L.-F. Tam, Positive mass theorem and the boundary behaviors of compact manifolds
    with nonnegative scalar curvature, J. Differ. Geom., 62, 79–125, (2002).
    [51] R. C. Tolman, Relativity Thermodynamics and Cosmology, (London: Oxford University
    Press, 1934).
    [52] A. Trautman, Conservation Laws in General Relativity in “Gravitation: An Introduction to
    Current Research”, ed. L. Witten (Wiley, New York, 1962)
    [53] K. H. Vu, Quasilocal Energy-Momentum and Angular Momentum for Teleparallel Gravity,
    MSc. Thesis (National Central University, Chung-li), (2000), unpublished.
    [54] R. M. Wald, General Relativity, (The University of Chicago Press, 1984).
    [55] S. Weinberg, Gravitation and Cosmology, (New York: Wiley, 1972).
    [56] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys., 80, 381–402,
    (1981).
    [57] X. Wu, C.-M. Chen, J. M. Nester, Quasilocal energy-momentum and energy flux at null
    infinity, Phys. Rev. D, 71, 124010 (2005).
    [58] R. Schoen, S.-T. Yau, On the Proof of the Positive Mass Conjecture in General Relativity,
    Commun. math. Phys., 65, 45–76 (1979).
    [59] R. Schoen, S.-T. Yau, Proof that the Bondi mass is positive, Phys. Rev. Lett., 48, 369-371,
    (1982).
    [60] C.-C. M. Liu, S.-T. Yau, Positivity of quasilocal mass, Phys. Rev. Lett., 90, 231102-1-4,
    (2003).
    [61] M.-T. Wang, S.-T. Yau, A generalization of Liu-Yau’s quasi-local mass, Commun. Anal.
    Geom., 15, 249, (2007).
    [62] M.-T.Wang, S.-T. Yau, Quasilocal Mass in General Relativity, Phys. Rev. Lett., 102, 021101,
    (2009).
    [63] M.-T. Wang, S.-T. Yau, Commun. Math. Phys., 288, 919–942, (2009).
    [64] N. Nadirashvili, Y. Yuan, Counterexamples for Local Isometric Embedding, arXiv e-print,
    (2002). [math.DG/0208127].

    QR CODE
    :::