| 研究生: |
陳宏杰 Hung-chieh Chen |
|---|---|
| 論文名稱: |
氧化鋅擔載金-鉑雙金屬觸媒應用於甲醇部份氧化產製氫氣之研究 Hydrogen production by partial oxidation of methanol over Au-Pt/ZnO catalyst |
| 指導教授: |
張奉文
Feg-wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 甲醇部份氧化 |
| 外文關鍵詞: | partial oxidation of methanol |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以氧化鋅為擔體,以共沉澱法製備擔體奈米金鉑雙金屬觸媒,應用於甲醇部分氧化反應產製氫氣 (CH3OH + 1/2O2 → 2H2 + CO2),評估此反應生成高純度氫氣應用於燃料電池的可行性。先利用熱重分析儀( TGA )分析觸媒前趨物熱分解情形,發現在573 K左右重量損失趨於穩定,因此以573 K為起始煅燒溫度。由X-ray繞射儀( XRD )結果顯示,煅燒前後觸媒並未有明顯的金及鉑的繞射峰,僅可在煅燒前後發現擔體結構的變化。氮氣吸附( BET )分析結果發現以順向共沉澱法製備的觸媒比表面積較逆向共沉澱法高,顯示製備程序對觸媒的特性有影響,而煅燒過後比表面積有逐漸減小的趨勢。穿透式電子顯微鏡( TEM )觀察的結果發現,不同製備程序的觸媒在未煅燒時表面的金鉑晶粒徑並無太大差異,但隨著煅燒溫度增加由5.7 nm增加到17.2 nm。由程式升溫還原( TPR )分析觸媒的還原特性,發現觸媒煅燒後的還原溫度向低溫偏移,原因在於未煅燒之觸媒前趨物含有大量Cl¯離子,其成分與煅燒過後不同,而煅燒後波峰面積減少,可見氧化態金屬減少,觸媒表面主要為零價金屬。觸媒在經過活性測試後,計算其甲醇轉化率、氫氣選擇率與一氧化碳選擇率,發現以順向共沉澱法製備的觸媒雖轉化率較低,但有較高的氫氣選擇率及較低的一氧化碳選擇率;未煅燒的觸媒則有較佳的活性;在反應本身的變因方面,進料氧/甲醇的莫耳比在0.3時有較高的氫氣選擇率及較低的一氧化碳選擇率;隨著反應溫度升高,甲醇轉化率及氫氣選擇率均會增加,但一氧化碳選擇率亦隨之提高。未來在有關金觸媒研究上期望能製備出反應活性佳且能產製高純度氫氣的觸媒,以提供燃料電池的氫氣來源。
ZnO-supported gold and platinum catalysts were prepared by coprecipitation method and were tested by partial oxidation of methanol reaction (CH3OH + 1/2O2 → 2H2 + CO2) to produce hydrogen for fuel cell application. Results of TGA analysis show that minimum temperature required for decomposition of catalyst precursor is about 573 K. From XRD analysis, it was not observed apparent peaks for both gold and platinum probably due to small loading. Only supports could be observed the variation of structure after calcination. BET specific area analysis indicates that catalysts prepared by coprecipitation have higher specific surface area than reverse coprecipitation. With increasing calcination temperature, specific area of catalyst decreases. TEM images show that different preparation procedure does not affect particle size, but it increases from 5.7 nm to 17.2 nm when calcination temperature is up to 773 K. TPR analysis illustrates that reduction temperature of catalyst shifts to lower value due to large amount of chloride ion involving in the components of catalyst precursor before calcination. The peak area of catalyst decreases since oxidized species diminish and mainly contains metallic ones. From catalytic activity tests, copecipitation method shows lower methanol conversion but higher hydrogen selectivity and lower carbon monoxide selectivity than reverse coprecipitation method. It shows better catalytic activity because of the state of metals. The mole ratio O2/CH3OH = 0.3 results in higher hydrogen selectivity and lower carbon monoxide selectivity. With increasing reaction temperature, both hydrogen selectivity and methanol conversion increase but also carbon monoxide selectivity. In the future, we expect to prepare catalyst which could effectively catalyze POM reaction and produce high purity hydrogen supplying sources of energy.
Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R. M., and Fierro, J. L. G., “Preduction of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, Journal of Catalysis, 219, 389 (2003).
Agrell, J., Germani, G., Järås, S. G., and Boutonnet, M., “ Production of hydrogen by partial oxidation of methanol over ZnO supported palladium catalysts prepared by microemulsion technique”, Applied Catalysis A: General , 242 ,233 (2003).
Albero, J.S., Reinoso, F.R., and Escribano1, A.S., “Improved metal-
support interaction in Pt/CeO2–SiO2 catalysts after zinc Addition”, Journal of Catalysis, 210, 127 (2002).
Alejo, L., Lago, R., Pena, M. A. and Fierro, J. L. G., “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalysts”, Applied Catalysis A: General, 162, 281 (1997).
Andreeva, D., Idakiev, V., Tabakova, T, Andreev, A., and Giovanoli, R.,
“Low-temperature water-gas shift reaction over Au/α-Fe2O3”, Journal of
Catalysis, 158, 354 (1996).
Andreeva, D., Tabakova, T., Idakiev, V., Christov, P., and Giovanoli, R., “Au/Alpha-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation”, Applied Catalysis A:General, 169, 9 (1998).
Arrii, S., Morfin, F., Renouprez, J., and Rousset, J.L., “Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution”, Journal of the American Chemical Society, 126, 1199 (2004).
Avgouropoulos, G., Ioannides, T., Papadopoulou, Ch., Batista, J., Hocevar, S., and Matralis, H.K., “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catalysis Today, 75, 157 (2002).
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., and Lchikawa, S., Haruta, M., “Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcinations temperature on the CO oxidation”, Journal of Catalysis, 202, 256 (2001).
Chang, C.K., Chen, Y.J., and Yeh, C.T., “Characterization of alumina-suppoted gold with temperature-programmed reduction”, Applied Catalysis A: General, 174, 13 (1998).
Costello, C.K., Kung, M.C., Oh, H.S., Wang, Y, and Kung, H.H., “Nature of the active site for CO oxidation on highly active Au/Al2O3”, Applied Catalysis A: General, 232, 159 (2002).
Cubeiro, M. L. and Fierro, J. L. G. “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Applied Catalysis A: General, 168, 307 (1998).
Cunningham, D.A.H., Vogel, W., Sanchez, R.M.T., Tanaka, K., and Haruta, M., “Structural analysis of Au/TiO2 catalysts by debye function analysis”, Journal of Catalysis, 183, 24 (1999).
Date, D., Lchihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., and Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catalysis Today, 72, 89 (2002).
Gardner, S. D., Hoflund, G. B., Upchurch, B. T., Schryer, D. R., Kielen, E. J. and Schryer, J., “Comparison of the performance-characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation”, Journal of Catalysis, 129, Iss 1, 114 (1991).
Grisel, R.J.H., Kooyman, P.J., and Nieuwenhuys, B.E., “Influence of the preparation of Au/Al2O3 on CH4 oxidation activity”, Journal of Catalysis, 191, 430 (2000).
Grisel, R.J.H., and Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catalysis Today, 64, 69 (2001).
Grisel, R.J.H., Slyconish, J.J., and Nieuwenhuys, B.E., “Oxidation reactions over multi-component catalysts: low-temperature CO oxidation and the total oxidation of CH4”, Topics in Catalysis. 16/17, 425 (2001).
Haruta, M., “Nanopariculate gold catalysts for low-temperature CO oxidation”, Journal of New Materials for electrochemical systems, 7, 163 (2004).
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catalysis Today, 36, 153 (1997).
Haruta, M., and Daté, M., ” Advances in the catalysis of Au nanoparticles”, Applied Catalysis A: General, 222, 427 (2001).
Haruta, M., Kobayashi, T., Sano, H., and Yamada, N., Catalysis Letters, 405 (1987).
Haruta, M., Tsubota, S., Kobayashi, T., Kagetama, H., Genet, M. J., and Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, Journal of Catalysis, 144, 175 (1993).
Haruta, M., Yamada, N., Kobayashi, T., and Iijima, S., Journal of Catalysis, 115, 301 (1989).
Hcyashi, T. and Haruta, M. “Effect of a loading on selectivity in the reaction of propylene on Au/TiO2 catalyst”, Shokubai, 37, 75 (1995).
Huang, T. J. and Chren, S. L. “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Applied Catalysis A: General, 40, 43 (1988).
Hutchings, G. J., Gold Bull, 29, 123 (1996).
Hutchings, G.J., Siddiqui, M.R.H., Burrows. A., Kiely, C.J., and Whyman, R., “Highly-activity Au/CuO-ZnO catalysts for the oxidation of carbon monoxide at ambient temperature”, Journal of the Chemical Society, Faraday Transactions, 93, 187 (1997).
Hwang, C.P., and Yeh, C.T., “Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina”, Journal of Molecular Catalysis A: Chemical, 112, 295 (1996).
Igarashi, H., Uchida, H., Suzuki, M., Sasaki, Y., and Watanabe, M., “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite”, Applied Catalysis A: General, 159, 159 (1997).
Khoudiakov, M., Gupta, M.C., and Deevi, S., “Au/Fe2O3 nanocatalysts for CO oxidation : A comparative study of deposition-precipitation and coprecipitation techniques”, Applied Catalysis A: General, 291, 151 (2005).
Lian, H.L., Jia, M.J., Pan, W.C., Zhang, W.X., and Jiang, D.Z., “Copper promoted Au/ZnO-CuO catalysts for low temperature water-gas shift reaction”, Chemical Research in Chinese Universities, 22, 99 (2006).
Luengnaruemitchai, A., Osuwan, S., Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catalysis Communications, 4, 215 (2003).
Mavrikakis, M., Stoltze, P., and Norskov, J. K., “Making gold less noble”, Catalysis Letters, 64, Iss 2-4, 101 (2000).
Mihut, C., Descorme, C., Duprez, D., and Amiridis, D., “Kinetic and spectroscopic characterization of cluster-derived supported Pt-Au catalysts”, Journal of Catalysis, 212, 125 (2002).
Minico, S., Scire, S., Crisafulli, C., Maggiore, R. and Galvagmo, S. “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts”, Applied Catalysis B: Environmental, 28, 245 (2000).
Monyanon, S., Pongstabodee, S., and Luengnaruemitchai, A., “Catalytic activity of Pt-Au/CeO2 catalyst for the preferential oxidation of CO in H2- rich stream”, Journal of Power Sources, 163, 547 (2006).
Moreau, F., Bond, G.C., and Taylor, A.O., “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents”, Journal of Catalysis, 231, 105 (2005).
Oetjen, H.F., Schmidt, V.M., Stimming, U., Trila,F., “Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas”, J. Electrochem. Soc.143 (1996)3838.
Okumura, M., Tsubota, S., Iwamoto, M., and Haruta, M., “Hemical-vapor-deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of COand of H2”, Reaction Kinetics and Catalysis Letters, 315 (1998).
Park, E. D., Lee, J. S., “Effects of pretreatment conditions on CO oxidation over supported Au catalysts”, Journal of Catalysis, 186, 1 (1999).
Somorjai, G. A., Introduction to Surface Chemistry and Catalysis,
Wiley–Interscience, New York, (1994).
Suh, D.J., Kwak, C., Kim, J.H., Kwon, S.M., and Park, T.J., “Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts”, Journal of Power Sources, 142, 70 (2005).
Tanielyan, S.K., and Augustine, R.L., “Effect of catalyst pretreatment on the oxidation of carbon monoxide over coprecipitated gold catalysts”, Applied Catalysis A: General, 85, 73 (1992).
Velu, S., Suzuki, K., and Osaki, T., “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered
Double hydroxides”, Catalysis Letters, 62, 159 (1999).
Visco, A.M., Donato, A., Milone, C., and Galvagno, S., “Catalytic oxidation of carbon monoxide over Au/Fe2O3 preparations”, Reaction Kinetics and Catalysis Letters, 61, 219 (1997).
Wang, D., Hao, Z., Cheng, D., Shi, X., and Hu, C., “Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/A2O3 catalysts”, Journal Molecular Catalysis A: Chemical, 200, 229 (2003).
Wang, G.Y., Zhang, W.X., Lian, H.L., Jiang, D.Z., and Wu, T.H., “Effect of calcinations temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances”, Applied Catalysis A: General, 239, 1 (2003).
Wang, Z., Xi, J., Wang, W. and Lu, G. “Selective production of hydrogen by partial oxidation of methanol over Cu-/Cr catalysts”, Journal of Molecular Catalysis A: Chemical, 191, 123 (2003).
Wolf , A., and Schüth. F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Applied Catalysis A: General , 226, 1 (2002).
Yahiro, H., Nakaya, K., Yamamoto, T., Saiki, K., and Yamaura, H., “Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction”, Catalysis Communications, 7, 228 (2006).
Yuan, Y., Kozlova, A.P., Asakura, K., Wan, H., Tsai, K., and Iwasawa, Y., “Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: Charaterization and low-temperature CO oxidation”, Journal of Catalysis, 170, 191 (1997).
Zanella ,R., Giorgio S., Shin, C.R., Henry, C.R., andLouis, C., “Alternative methods for the preparation of gold nanoparticles supported on TiO2”, Journal of Physical Chemistry B, 106, 7634 (2002).
陳永杰,洪華聖,葉君棣, “支撐性金觸媒在甲醇部分氧化反應上的應用”,第十九屆觸媒與反應工程研討會 (2001).
余心印, “氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究”,國立中央大學化學與材料工程研究所碩士論文(2005)。
廖麗美, “氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究”,國立中央大學化學與材料工程研究所碩士論文(2005)。