| 研究生: |
吳斯燻 Szu-Hsun Wu |
|---|---|
| 論文名稱: |
以毛細管電泳法計算主-客內包錯合物結合常數之研究 Application of cyclodextrin-mediated capillary electrophoresis to determine the apparent binding constants and of the alkylnaphthalene derivatives |
| 指導教授: |
丁望賢
Wang-Hsien Ding |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 環糊精 、毛細管電泳法 、結合常數 、熱力學 |
| 外文關鍵詞: | Inclusion complex, Cyclodextrins, Thermodynamic parameters, Apparent binding constants |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毛細管電泳層析術提供了極高效率的分離度,且分析速度快、以及具有分析少量樣品和溶劑消耗量少的特性,並且可以使用多種分離模式針對大部分的物質進行電泳分離。藉由添加一種具有空腔結構的主分子與分析物 (客分子)錯合形成非共價鍵錯合物(non-covalent bond complex),而形成非共價鍵結構的主-客錯合物(host-guest complexes)或稱為內包錯合物(inclusion complexes),進而影響內包錯合物之電泳遷移率,以達到結構異構物及藥物之光學異構物分離(chiral separation)。毛細管電泳的應用於生物分子辨識 (molecular recognition)之研究多用來鑑定抗原-抗體或受質(ligand)-受器(receptor)間之作用力的專一性,藉由簡化的主-客模型來預測複雜的自然生物行為,而毛細管電泳不僅可從事這些作用力的定性分析研究,同時亦適合於定量上的探討。
在適當的條件下,毛細管環糊精修飾區帶電泳法 (cyclodextrin electrokinetic chromatography, CD-EKC)能有效分離七種中性烷基?環分子位置異構物,分離的最佳條件是在緩衝溶液中添加carboxymethyl-?-cyclodextrin (CM-?-CD),在pH 6.0的情況下,達到最佳的分離效果。藉由結合常數的計算可以了解中性烷基?環分子與CM-?-CD的錯合模式 (1:1或2:1化學計量內包錯合物),並搭配光譜技術,以證實毛細管電泳法所計算之結合常數與傳統光譜法計算結果之一致性。中性烷基?環分子在?位置上取代的異構物,如1-ethylnaphthalene, 1,4-dimethylnaphthalene兩種中性?環異構物,會與兩個CM-?-CD錯合形成2:1化學計量之主-客內包錯合物。藉由溫度的改變可以得知CM-?-CD與中性烷基?環分子在不同溫度下的結合常數變化,以計算主-客錯合作用的熱力學參數。CM-?-CD與中性烷基?環分子在?位置上之?S為正值,驗證CM-?-CD與?環?位置上的中性烷基?環分子錯合機制,在任何溫度下都可自發性的產生,且低溫下有較佳的錯合作用。
Capillary electrophoresis (CE) has been established as a powerful technique for separating an unusually large variety of compounds. This versatility is due in part to the ease and speed with which the CE running buffer can be altered with a variety of reagents to influence the migration rates. And CDs were commonly used host molecules. The family of cyclodextrins (CDs) is one of the most intensively studied macromolecular systems. The formation of cyclodextrin-based guest-host complexes is a simple model for studying molecular recognition processes, and has been employed in many applications, such as pharmaceutical, cosmetic and food industries.
The separation and migration behavior of seven positional and structural neutral alkylnaphthalene derivatives in cyclodextrin-mediated electrokinetic chromatography were systematically investigated. The effective separation conditions were to use 10 mM phosphate buffer with negatively charged carboxymethyl-?-cyclodextrin (CM-?-CD) at pH 6.0. The guest-host interactions with both 1:1 and 1:2 binding stoichiometries for various derivatives have been evaluated by comparing the apparent binding constants, the results reveal that the substituent group(s) attached to the naphthalene ring significantly affected the inclusion stoichiometric behaviors. Alkylnaphthalene derivatives with the substituent(s) at 1-position(s), such as 1-ethylnaphthalene, 1,4-dimethylnaphthalene, may undergo complexation with one and two CM-?-CD molecules. The binding constants of these derivatives agreed closely with the data obtained by a photometric method. The thermodynamic parameters were also calculated to improve our understanding of the interaction between the neutral alkylnaphthalene derivatives and CM-?-CD at various temperatures. The positive entropy (?S?) values for the alkylnaphthalenes with the substituent(s) at 2-position(s) indicate that the inclusion of the guest molecule into the cavity of CM-?-CD is favored at all temperatures.
1.Alvarez-Parrilla, E., Al-Soufi, W., Cabrer, P. R., Novo, M. and Tato, J. V., Resolution of the Association Equilibria of 2-(p-Toluidinyl)- naphthalene-6-sulfonate (TNS) with ?-cyclodextrin and a charged derivative, J. Phys. Chem. B 2001, 105, 5994-6003.
2.Armstrong, D. W. and Stine, G. Y. Evaluation of partition coefficients to micelles and cyclodextrins via planar chromatography, J. Am. Chem. Soc. 1983, 105, 2962-2964.
3.Armstrong, D. W., Rundlett, K. and Reid, G. L., Use of a macrocyclic antibiotic, rifamycin B, and indirect detection for the resolution of racemic amino alcohois by CE, Anal. Chem. 1994, 66, 1690-1695.
4.Barros, T. C., Stefaniak, K., Holzwarth, J. F. and Bohne, C., Complex -ation of naphthylethanols with ?-Cyclodextrin, J. Phys. Chem. A 1998, 102, 5639-5651.
5.Bowser, M. T. and Chen, D. D. Y., Higher order equilibria and their effect on analyte migration behavior in capillary electrophoresis, Anal. Chem. 1998, 70, 3261-3270.
6.Bowser, M. T. and Chen, D. D. Y., Monte carlo simulation of error propagation in the determination of binding constants from rectangular hyperbolae. 1. Ligand concentration range and binding constant, J. Phys. Chem. A 1998, 102, 8063-8071.
7.Bowser, M. T. and Chen, D. D. Y., Monte carlo simulation of error propagation in the determination of binding constants from rectangular hyperbolae. 2. effect of the maximum-response range, J. Phys. Chem. A 1999, 103, 197-202.
8.Bowser, M. T., Kranack, A. R. and Chen, D. D. Y., Properties of multivariate binding isotherms in capillary electrophoresis, Anal. Chem.1998, 70, 1076-1084.
9.Brewster, R. E., Teresa, B. F., and Schuh, M. D., Inclusion complexes of 6-bromo-2-naphthol (guest) and r-cyclodextrin (host): thermo -dynamics of the binary complex and first-reported dynamics of a triplet-state guest/host complex, J. Phys. Chem. A 2003, 107, 10521-10526.
10.Britz-McKibbin, P. and Chen, D. D. Y. Accurately describing weak analyte-additive interactions by capillary electrophoresis, Electrophoresis 2002, 23, 880–888.
11.Britz-McKibbm, P. and Chen, D. D. Y., Prediction of the migration behavior of analytes in capillary electrophoresis based on three fundamental parameters, J. Chromatogr. A 1997, 781, 23–34.
12.Catena, G. C. and Bright, F. V. Thermodynamic study on the effects of ?-cyclodextrin inclusion with anilinonaphthalenesulfonates, Anal. Chem. 1989, 61, 905-909.
13.Cervero, M. and Mendicuti, F., Inclusion complexes of dimethyl 2,6-naphthalenedicarboxylate with ?- and ?-cyclodextrins in aqueous medium: thermodynamics and molecular mechanics studies, J. Phys. Chem. B 2000, 104, 1572-1580.
14.Chen, M. H. and Ding, W. H., Separation and migration behavior and positional and structural naphthalenesulfonate isomers by cyclodextrin-mediated capillary electrophoresis, J. Chromatogr. A 2004, 1033, 167-172.
15.Connors, K. A., The Stability of cyclodextrin complexes in solution, Chem. Rev. 1997, 97, 1325-1357.
16.Corradini, R., Buccella, G., Galaverna, G., Dossena, A. and Marchelli, R. Synthesis and Chiral Recognition Properties of L-Ala-Crown(3)-L -Ala Capped β-Cyclodextrin, Tetrahedron Lett 1999, 40, 3025–3028.
17.Cserhati, T. and Forgacs, E., Effect of carboxymethyl-β-cyclodextrin on the hydrophobicity parameters of steroidal drugs, Carbohydrate Polymers 1999, 38, 171-177.
18.Culha, M., Fox, S. and Sepaniak, M., Selectivity in capillary electrochromatography using native and single isomer anionic cyclodextrin reagents, Anal. Chem. 2000, 72, 88-95.
19.Deranleau, D. A., Theory of the measurement of weak molecular complexes. II. Consequences of multiple equilibria, J. Am. Chem. Soc. 1969, 91, 4050-4054.
20.Douhal, A., Ultrafast guest dynamics in cyclodextrin nanocavities, Chem. Rev. 2004, 104, 1955-1976.
21.Dyck, A. S. M., Kisiel, U. and Bohne, C., Dynamics for the assembly of pyrene-?-cyclodextrin host-guest complexes, J. Phys. Chem. B 2003, 107, 11652-11659.
22.Encinas, M.V., Lissi, E.A., Rufs, A.M., Inclusion and fluorescence quenching of 2,3-dimethylnaphthalene in beta-cyclodextrin cavities, J. Photochem. Photobiol. 1993, 57,603-608.
23.Fanali, S., Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors, J. Chromatogr. A 2000, 875, 89-122.
24.Fanali, S., Separation of optical isomers by capillary zone electro -phoresis based on. host-guest complexation with cyclodextrins, J. Chromatogr. 1989, 474, 441–446.
25.Fischer, J., Jandera, P., Stanek, V., Effects of the working electrolyte(cyclodextrin type and pH)on the separation of aromatic sulphonic acids by capillary zone electrophoresis, J. Chromatogr. A 1997, 772, 385-396.
26.Fujiki, M., Deguchi., T., Sanemasa, I., Association of naphthalene and its methyl derivatives with cyclodextrins in aqueous medium, Bull. Chem. Soc. Jpn. 1998, 61, 1163-1167.
27.Gabelica, V., Galic N. and Pauw, E. D., On the Specificity of cyclodextrin complexes detected by elelctrospray mass spectrometry, J. Am. Soc. Mass Spectrom. 2002, 13, 946-953.
28.Gonzalez-Gaitano, G., Guerrero-Martınez, A., Nunez-Barriocanal, J. L., Montoro, T. and Tardajos, G., Spectroscopic characterization of the system ?-cyclodextrin propafenone hydrochloride water, J. Phys. Chem. B 2002, 106, 6096-6103.
29.Gratz, S. R. and Stalcup, A. M., Enantiomeric separations of terbutaline by CE with a sulfated ?-cyclodextrin chiral selector: A quantitative binding Study, Anal. Chem.1998, 70, 5166-5171.
30.Guo, M., Zhang, S., Song, F., Wang, D., Lin, Z. and Liu, S., Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using electrospray ionization tandem mass spectrometry, J. Am. Soc. Mass Spectrom. 2003, 38, 723-731.
31.Hamai, S. and Hatamiya, A., Excimer formation in inclusion of ?-cyclodextrin with 1-alkylnaphthalenein aqueous solutions, Bull. Chem. Soc. Jpn. 1996, 69, 2469-2476.
32.Hamai, S. and Sakurai H., 2H2O effect on the inclusional complexation of ?-cyclodextrin with sodium 2-naphthalenesulfonate in capillary electrophoresis and UV spectrophotometry, J. Chromatogr. A 1998, 800, 327-332.
33.Hamai, S. and Satou, H., Inclusion complexes of cyclodextrins with methylene blue and-naphthol orange and temperature dependence of the inclusion complexation in aqueous solutions, Bull. Chem. Soc. Jpn. 2002, 75, 77–84.
34.Hamai, S., Association of inclusion compounds of ?-cyclodextrin in aqueous solution, Bull. Chem. Soc. Jan., 1982, 55, 2721-2729.
35.Hamai, S., The excimer fluorescence of 2-methylnaphthalene in ?-and ?-Cyclodextrin aqueous solutions, Bull. Chem. Soc. Jpn., 1996, 69, 543-549.
36.Han, L. M., Wang, H., Gu, J. and Fu, R., Capillary electrophoresis enantioseparation of drugs using ?-cyclodextrin polymer: Intra -molecular synergistic effect, Electrophoresis 1999, 20, 1900-1903.
37.Harata, K. and Uedaira, H., The circular dichroism spectra of the ?-cyclodextrin complex with naphthalene derivatives, Bull. Chem. Soc. Jpn. 1975, 48, 375-378.
38.Harata, K., Uedaira, H., The circular dichroism spectra of the ?-cyclodextrin complex with naphthalene derivatives, Bull. Chem. Soc. Jpn. 1975, 48, 375-378.
39.Hembury, G., Rekharsky, M., Nakamura, A. and Inoue, Y., Direct correlation between complex conformation and chiral discrimination upon inclusion of amino acid derivatives by ?- and ?-Cyclodextrins, organic letters 2000, 2, 3257-3260.
40.Hjerten, J., Free zone electrophoresis, Chromatogr. Rev., 1967, 9, 122-219.
41.Inoue, Y., Hakushi, T., Liu, Y., Tong, L. H., Shen, B. J. and Jins D. S., Thermodynamics of molecular recognition by cyclodextrins. 1. calori -metric titration of inclusion complexation of naphthalenesulfonates with cy-, 6-, and y-Cyclodextrins: enthalpy-entropy compensation, J. Am. Chem. Soc. 1993, 115, 475-481.
42.Jandera, P., Stanek, V. and Claessens, H. A., Effect of substituted cyclodextrins on the separation of aromatic sulphonic acids by capillary electrophoresis, J. Chromatogr. A 2002, 948, 235-247.
43.Jorgenson., J. W. and Lukacs, K. D., High-resolution separation based on electrophoresis and electroosmosis, J. Chromatogr., 1981, 218, 209-216.
44.Jover, A., Budal, R. M., Meijide, F., Soto, V. H. and Tato, J. V., Determination of microscopic equilibrium constants for the complex -ation of ditopic guests by cyclodextrins from NMR Experiments, J. Phys. Chem. B 2004, 108, 18850-18859
45.Kohlarush, F., ?ber Concentration-verschiebungen durch elektrolyse im innerenvon l?sungsgemischen, Ann. Phys. Chem.(Leipzig)1897, 62, 209-239.
46.Kranack, A. R., Bowser, M. T., Britz-McKibbin, P., and Chen, D. D. Y., The effects of a mixture of charged and neutral additives on analytes migration behavior in capillary electrophoresis, Electrophoresis 1998, 19, 388-396.
47.Lelievre, F. and Gareil, P., Selectivity in capillary electrophoresis: application to chiral separations with cyclodextrins, Anal. Chem. 1997, 69,385-392.
48.Li, D., Fu, S. and Lucy, C. A., Prediction of electrophoretic mobilities. 3. effect of ionic strength in capillary zone electrophoresis, Anal. Chem. 1999, 71, 687-699.
49.Ma, L. Han, J., Wang H. Gu, J.,and Fu, R., Capillary electrophoresis enantioseparation of drugs using ?-cyclodextrin polymer: Intra -molecular synergistic effect, Electrophoresis 1999, 20, 1900-1903.
50.Martin-Biosca, Y., Garcia-Ruiz, C. and Marina, M. L., Enantiomeric separation of chiral phenoxy acid herbicides by electrokinetic chromatorgraphy. Application to the determination of analyte-selector apparent binding constants for enantiomers, electrophoresis 2001, 22, 3216-3225.
51.Martin-Biosca, Y., Garcia-Ruiz, C. and Marina, M. L., Fast enantiomeric of uniconazole and diniconazole by electrokinetic chromatography using an anionic cyclodextrin: Application to the determination of analyte-selector apparent binding constants for enantiomers, Electrophoresis 2000, 21, 3240-3248.
52.Martin-Biosca, Y., Garcia-Ruiz, C., and Marina, M. M., Fast enantiomeric separation of uniconazole and diniconazole by electrokinetic chromatography using an anionic cyclodextrin: Application to the determination of analyte-selector apparent binding constants for enantiomer, Electrophoresis 2002, 21, 3240-3248.
53.Merino, C., Junquera, E., Jimenez-Barbero, J. and Aicart, E., Effect of the presence of ?-cyclodextrin on the solution behavior of procaine hydrochloride. spectroscopic and thermodynamic studies, Langmuir 2000, 16, 1557-1565.
54.Nhujak, T. and Goodall, D. M., Comparison of binding of tetra -phenylborate and tetraphenylphosphonium ions to cyclodextrins studied by capillary electrophoresis, Electrophoresis 2001, 22, 117-122.
55.Pastor, I., Marino, A. D. and Mendicuti, F., Thermodynamics and molecular mechanics studies on ?- and ?-cyclodextrins complexation and diethyl 2,6-naphthalenedicarboxylate guest in aqueous medium, J. Phys. Chem. B 2002, 106, 1995-2003.
56.Peng, X., Bowser, M. T., Britz-McKibbin, P., Bebault, G. M., Morris, J. and Chen, D. D. Y. Quantitative description of analyte migration behavior based on dynamic complexation in capillary electrophoresis with one or more additives, Electrophoresis 1997, 18, 706-716.
57.Penn, S. G., Bergstrom, E. T. and Goodall D. M., Capillary electrophoresis with chiral Selectors: Optimization of separation and determination of thermodynamic parameters for binding of tioconazole enantiomers to cyclodextrins, Anal. Chem. 1994, 66, 2866-2873.
58.Penn, S. G., Bergstrom, E. T., Knights, I., Liu G., Ruddick, A. and Goodall, D. M., Capillary electrophoresis as a method for determining binding constants:application to the bonding of cyclodextrins and nitrophenolates, J. Phys. Chem. 1995, 99, 3875-3880.
59.Penn, S. G., He, F., Green, M. K. and Lebrilla, C. B., The use of heated capillary dissociation and collision-induced dissociation to determmine the strength of noncovalent bonding interactions in gas-phase peptide-cyclodextrin complexes, J. Am. Soc. Mass Spectrom. 1997, 8, 244-252.
60.Rawjee, Y. Y. and Vlgh, G., A peak resolution model for the capillary electrophoretic separation of the enantiomers of weak acids with hydroxypropyl ?-cyclodextrin containing background electrolytest, Anal. Chem. 1994, 66, 619-627.
61.Rekharsky, M. and Inoue, Y. 1:1 and 1:2 complexation thermodynamics of ?-Cyclodextrin with N-carbobenzyloxy aromatic amino acids and ?-phenylalkanoic acids, J. Am. Chem. Soc. 2000, 122, 10949-10955.
62.Rizzi, A., Fundamental aspects of chiral separations by capillary electrophoresis, Electrophoresis 2001, 22, 3079-3106.
63.Rodriguez, M. A., Liu, Y., McCulla, R., Jenks, W. S. and Armstrong, D. W., Enantioseparation of chiral sulfoxides and sulfinate esters by capillary electrophoresis, Electrophoresis 2002, 23, 1561–1570.
64.Rouessac, F., Rouessac, A chemical analysis: moderm instrumental and techniques, New York, 2000.
65.Rundlett, K. L. and Armstrong, D. W., Examionation of the origin, variation, and proper use of expression for estimation of association constations by capillary electrophoresis, Journal of Chromatography A, 1996, 721, 173-186.
66.Rundlett1 K. L. and Armstrong, D. W., Methods for the determination of binding constants by capillary electrophoresis, Electrophoresis 2001, 22, 1419–1427.
67.Sainz-Rozas, P. R., Isasi, J. R., Sanchez, M., Tardajos, G. and Gonzalez-Gaitano, G., Effects of natural cyclodextrins on the photophysical properties of dibenzofuran-2-carboxylic acid, J. Phys. Chem. A 2004, 108, 392-402.
68.Salvador, A., Varesio, E., Dreux, M. and Veuthey, J. L., Binding constants dependency of amphetamines with various commercial methylated ?-cyclodextrin, Electrophoresis 1999, 20, 2670-2679.
69.Skoog, D.A., Holler, F.J., Nieman, T.A., Principles of instrumental analysis, Harcourt Brace & Company, 1998.
70.Survay, M. A., Goodall, D. M., Wren, S. A. C. and Rowe, R. C., Self-consistent framework for standardising mobilities in free solution capillary electrophoresis: applications to oligoglycines and oligoalanines, J. Chromatogr. A, 1996, 741, 99-113.
71.Tabushi, I., Cyclodextrin catalysis as a model for enzyme action, Acc. Chem. Res. 1982, 15, 66-72
72.Tamaki, T., Kokubu, T. and Ichimura, K., Regioselective and stereo -selective photodimerization of anthracene-derivatives included cyclodextrin, Tetrahedron 1987, 43, 1485-1494.
73.Tanaka, Y. and Terabe, S., Enantiomer separation of acidic racemates by capillary electrophoresis using cationic and amphoteric beta -cyclodextrins as chiral selectors, J. Chromatogr. A 1997, 781, 151–160.
74.Tanaka, Y. and Terabe, S., Estimation of binding constants by capillary electrophoresis, J. Chromatogr. B 2002, 768, 81-92.
75.Terabe S, Otsuka K, Ichikawa K, Tsuchiya, A. and Ando, T., Electro -phoretic separation with micellar solution and open tubular capillaries. Anal Chem 1984, 56, 111-13.
76.Terabe, S., Miyashita, S., Shibata, O., Barnhart, E.R., Alexander, L.R., Patterson, D.G., Karger, B.L., Hosoya, K. and Tanaka, N., Separation of highly hydrophobic compounds by cyclodextrin-modified micellar electrokinetic chromatography, J. of Chromatogr. 1990, 516, 23-31.
77.Verleysen, K. and Sandra, P., Separation of chiral compounds by capillary electrophoresis, Electrophoresis 1998, 19, 2798–2833.
78.Verleysen, K., Bosch, T. V. and Sandra, P., Comparison of highly sulfated ?-, ?-, and ?-cyclodextrins and 18-crown-6-tetracarboxylic acid for the enantiomeric separation of some amino acids and derivatives by capillary electrophoresis, Electrophoresis 1999, 20, 2650 – 2655.
79.Wang, F. and Khaledi, M. G., Nonaqueous capillary electrophoresis chiral separations with quaternary ammonium β-cyclodextrin, J. Chromatogr. A 1998, 817, 121–128.
80.Wren, S. A. C. and Rowe, R. C., Theoretical aspects of chiral separation in capillary electrophoresis, J. Chromatogr. A. 1992, 603, 235-241.
81.Wren, S. A. C., Mobility measurement on dansylated amino acid, journal of Chromatorgr. A, 1997, 768, 153-159.
82.Yu, J. S., Wei, F. S. Gap, W. and Zhao, C. C., Thermodynamic study on the effects of the ?-cyclodextrin inclusion complex with berberine, spectrochimica Acta Part A 2002, 58, 249-256.
83.Zerbinati, O. and Trotta, F., Cyclodextrin-assisted capillary electro -phoretic resolution of 1,1’-bi-2-naphthol atropisomers, Electro -phoresis 2001, 22, 3578–3582.
84.Zerbinati, O., Trotta, F., Giovannoli C., Baggiani C., Giraudi G. and Vanni A. New derivatives of cyclodextrins as chiral selectors for the capillary electrophoretic separation of dichlorprop enantiomers. J Chromatogr. A 1998, 810, 193–200.