| 研究生: |
林蕙瑜 Hui-Yu Lin |
|---|---|
| 論文名稱: |
人類多能幹細胞在不同塗佈細胞外間質上分化視網膜色素上皮細胞 Differentiation of human pluripotent stem cells into retinal pigmented epithelial cells on different ECM-coated surface |
| 指導教授: |
樋口亞紺
Akon Higuchi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 細胞外基質 、生醫材料 、人類多能幹細胞 、細胞分化 、視網膜色素上皮細胞 |
| 外文關鍵詞: | extracellular matrix, biomaterials, human pluripotent stem cells, cell differentiation, retinal pigment epithelium |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
老年性黃斑部病變是不可逆視力損害的主要原因,與感光細胞及視網膜色素上皮細胞的功能損害有關。人類多能幹細胞衍生的視網膜色素上皮細胞的移植被認為為治療老年性黃斑部病變的方法。人類多能幹細胞可區分為人類胚胎幹細胞和人類誘導多能幹細胞,因為其具有無限的自我更新特性,所以可以提供作為分化視網膜色素上皮細胞的來源。此外,微環境在人類多能幹細胞的分化中起非常重要的作用。因此,我們研究了不同的培養方案及細胞培養生物材料對人類多能幹細胞向視網膜色素上皮細胞分化的影響,本研究使用修正後的NIC84 和 Activin A 製程去提升人類多能幹細胞分化為成熟視網膜色素上皮的效率,並選擇 Matrigel-、Laminin-521-、Laminin-511-、Synthemax II- 和Recombinant vitronectin (rVN)塗層表面作為細胞培養生物材料,以研究視網膜色素上皮細胞的最佳分化條件。我們觀察到人類誘導多能幹細胞 (HPS0077) 衍生的視網膜色素上皮細胞表現多邊形形態,並且經由流式細胞儀測試和免疫染色分析發現其表達成熟視網膜色素上皮細胞的標記(ZO-1 和 RPE65)。因視網膜色素上皮細胞有色素沉澱之功能,細胞呈棕色,而本研究之人類誘導多能幹細胞衍生的視網膜色素上皮細胞也呈棕色細胞。在不同培養基質中,與Synthemax II 和rVN表面相較之下,Matrigel和Laminin-521塗層表面更可以支持人類誘導多能幹細胞有效分化為視網膜色素上皮細胞。
Age-related macular degeneration (AMD), which is the leading cause of irreversible visual impairment, is associated with the progressive dysfunction and death of photoreceptor cells and their supportive retinal pigment epithelial (RPE) cells. Transplantation of human pluripotent stem cell (hPSC)-derived RPE cells is considered as a promising approach to regenerate cell function and cure AMD. Human PSCs, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), can provide unlimited source of RPE cells because of indefinite self-renewal characteristics. Moreover, microenvironment plays an important role in differentiation of hPSCs. Therefore, I investigated the effect of cell culture biomaterials on the differentiation of hPSCs into RPE cells where Matrigel-, Laminin-521-, Laminin-511-, Synthemax II- and Recombinant vitronectin-coated surface were selected as the cell culture biomaterials in this study. Human PSCs were differentiated into RPE cells on different extracellular matrix (ECM) protein-coated surface using some different protocols (i.e., NIC84 and Activin A protocols) in order to investigate the optimal differentiation conditions into RPE cells. I observed the polygonal morphologies of hiPSCs (HPS0077)-derived RPE cells, which expressed RPE specific markers (ZO-1 and RPE65) by flow cytometry and immunostaining analysis using both protocols. Finally, hiPSCs-derived RPE cells showed brown color (pigmented) cells. Matrigel-, Laminin-521- and Laminin-511-coated surfaces could support the differentiation of hPSCs into RPE cells efficiently, which were compared with Synthemax II- and Recombinant vitronectin-coated surfaces. This is explained that RPE cells are ectodermal lineage of the cells where Laminin preferably supports ectodermal cells via integrin α6β1 rather than integrin αVβ5, which is the main binding site of vitronectin.
1. Tewary, M., N. Shakiba, and P.W. Zandstra, Stem cell bioengineering: building from stem cell biology. Nature Reviews Genetics, 2018. 19(10): p. 595-614.
2. Schwartz, S.D., et al., Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet, 2012. 379(9817): p. 713-720.
3. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015. 14(10): p. 681-692.
4. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-156.
5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
6. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 2000. 18(4): p. 399-404.
7. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001. 19(3): p. 193-204.
8. Vazin, T. and W.J. Freed, Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restorative Neurology and Neuroscience, 2010. 28(4): p. 589-603.
9. Adewumi, O., et al., Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007. 25(7): p. 803-816.
10. Stojkovic, M., et al., Derivation, growth and applications of human embryonic stem cells. Reproduction, 2004. 128(3): p. 259-267.
11. Robinton, D.A. and G.Q. Daley, The promise of induced pluripotent stem cells in research and therapy. Nature, 2012. 481(7381): p. 295-305.
12. Zakrzewski, W., et al., Stem cells: past, present, and future. Stem Cell Research & Therapy, 2019. 10.
13. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
14. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
15. Yu, J.Y., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
16. Maherali, N., et al., A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008. 3(3): p. 340-345.
17. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 348-362.
18. Stadtfeld, M., et al., Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008. 2(3): p. 230-240.
19. Okita, K., et al., Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008. 322(5903): p. 949-953.
20. Kim, D., et al., Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell, 2009. 4(6): p. 472-476.
21. Warren, L., et al., Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010. 7(5): p. 618-630.
22. Singh, V.K., et al., Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 2015. 3.
23. Yamanaka, S., Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 2012. 10(6): p. 678-684.
24. Hentze, H., et al., Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Research, 2009. 2(3): p. 198-210.
25. Gore, A., et al., Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011. 471(7336): p. 63-U76.
26. Zhao, T.B., et al., Immunogenicity of induced pluripotent stem cells. Nature, 2011. 474(7350): p. 212-U251.
27. Wu, D.C., A.S. Boyd, and K.J. Wood, Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Frontiers in Bioscience-Landmark, 2007. 12: p. 4525-4535.
28. Hussein, S.M., et al., Copy number variation and selection during reprogramming to pluripotency. Nature, 2011. 471(7336): p. 58-U67.
29. Kotini, A.G., et al., Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell, 2017. 20(3): p. 315-+.
30. Taoka, K., et al., Using patient-derived iPSCs to develop humanized mouse models for chronic myelomonocytic leukemia and therapeutic drug identification, including liposomal clodronate. Scientific Reports, 2018. 8.
31. Tian, Z.J., et al., Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. International Journal of Molecular Sciences, 2016. 17(4).
32. Luo, M.Y. and Y.X. Chen, Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. International Journal of Ophthalmology, 2018. 11(1): p. 150-159.
33. Schwartz, S.D., et al., Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet, 2015. 385(9967): p. 509-16.
34. Stadtfeld, M. and K. Hochedlinger, Induced pluripotency: history, mechanisms, and applications. Genes & Development, 2010. 24(20): p. 2239-2263.
35. Rowe, R.G. and G.Q. Daley, Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019. 20(7): p. 377-388.
36. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22.
37. Stern, J.H., et al., Regenerating eye tissues to preserve and restore vision. Cell stem cell, 2018. 22(6): p. 834-849.
38. Dellatore, S.M., A.S. Garcia, and W.M. Miller, Mimicking stem cell niches to increase stem cell expansion. Current Opinion in Biotechnology, 2008. 19(5): p. 534-540.
39. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035.
40. Tong, Z.X., et al., Application of biomaterials to advance induced pluripotent stem cell research and therapy. Embo Journal, 2015. 34(8): p. 987-1008.
41. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in polymer science, 2014. 39(7): p. 1348-1374.
42. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
43. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 2005. 11(2): p. 228-232.
44. Kawase, E. and N. Nakatsuji, Development of substrates for the culture of human pluripotent stem cells. Biomaterials Science, 2023.
45. Huang, G.Y., et al., Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017. 117(20): p. 12764-12850.
46. Chen, G.K., et al., Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 2011. 8(5): p. 424-U76.
47. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
48. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and biophysical research communications, 2008. 375(1): p. 27-32.
49. Miner, J.H. and P.D. Yurchenco, Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol, 2004. 20: p. 255-84.
50. Nishiuchi, R., et al., Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol, 2006. 25(3): p. 189-97.
51. Lu, H.F., et al., A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials, 2014. 35(9): p. 2816-26.
52. Rodin, S., et al., Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun, 2014. 5: p. 3195.
53. Sung, T.C., et al., Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. Journal of Materials Chemistry B, 2023. 11(7): p. 1389-1415.
54. Miyazaki, T., et al., Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun, 2012. 3: p. 1236.
55. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin. Stem cells, 2008. 26(9): p. 2257-2265.
56. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
57. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144.
58. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
59. Villa-Diaz, L.G., et al., Concise Review: The Evolution of Human Pluripotent Stem Cell Culture: From Feeder Cells to Synthetic Coatings. Stem Cells, 2013. 31(1): p. 1-7.
60. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
61. Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep, 2015. 5: p. 18136.
62. Chen, Y.-M., et al., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific reports, 2017. 7(1): p. 1-16.
63. Haruta, M., et al., In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Investigative Ophthalmology & Visual Science, 2004. 45(3): p. 1020-1025.
64. Boulton, M. and P. Dayhaw-Barker, The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye, 2001. 15: p. 384-389.
65. Nazari, H., et al., Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Progress in Retinal and Eye Research, 2015. 48: p. 1-39.
66. Kwon, W. and S.A. Freeman, Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling. Frontiers in Immunology, 2020. 11.
67. Rizzolo, L.J., Barrier properties of cultured retinal pigment epithelium. Exp Eye Res, 2014. 126: p. 16-26.
68. Yang, S., J. Zhou, and D.W. Li, Functions and Diseases of the Retinal Pigment Epithelium. Frontiers in Pharmacology, 2021. 12.
69. Lakkaraju, A., et al., The cell biology of the retinal pigment epithelium. Prog Retin Eye Res, 2020: p. 100846.
70. Okorienta, S.M., G.P. Einstein, and O.L. Tulp, Proposed Mechanisms of Age Related Macular Degeneration. Faseb Journal, 2018. 32(1).
71. Gehrs, K.M., et al., Age-related macular degeneration - emerging pathogenetic and therapeutic concepts. Annals of Medicine, 2006. 38(7): p. 450-471.
72. Sharma, R., et al., Retinal pigment epithelium replacement therapy for age-related macular degeneration: are we there yet? Annual review of pharmacology and toxicology, 2020. 60: p. 553-572.
73. Regent, F., et al., Automation of human pluripotent stem cell differentiation toward retinal pigment epithelial cells for large-scale productions. Sci Rep, 2019. 9(1): p. 10646.
74. Maruotti, J., et al., A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med, 2013. 2(5): p. 341-54.
75. Choudhary, P., et al., Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl Med, 2017. 6(2): p. 490-501.
76. Jin, Z.B., et al., Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res, 2019. 69: p. 38-56.
77. Buchholz, D.E., et al., Rapid and Efficient Directed Differentiation of Human Pluripotent Stem Cells Into Retinal Pigmented Epithelium. Stem Cells Translational Medicine, 2013. 2(5): p. 384-393.
78. Klimanskaya, I., et al., Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells, 2004. 6(3): p. 217-45.
79. Buchholz, D.E., et al., Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells, 2009. 27(10): p. 2427-34.
80. Luo, M. and Y. Chen, Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. Int J Ophthalmol, 2018. 11(1): p. 150-159.
81. Kashani, A.H., et al., A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Science Translational Medicine, 2018. 10(435): p. eaao4097.
82. Dehghan, S., et al., Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem Cell Research & Therapy, 2022. 13(1).
83. Maruotti, J., et al., Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci U S A, 2015. 112(35): p. 10950-5.
84. Smith, E.N., et al., Human iPSC-derived retinal pigment epithelium: a model system for prioritizing and functionally characterizing causal variants at AMD risk loci. Stem cell reports, 2019. 12(6): p. 1342-1353.
85. Yang, J.M., et al., Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Experimental & molecular medicine, 2021. 53(4): p. 631-642.
86. Michelet, F., et al., Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res Ther, 2020. 11(1): p. 47.
87. Hongisto, H., et al., Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther, 2017. 8(1): p. 291.
88. Sharma, R., et al., Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Science Translational Medicine, 2019. 11(475).
89. Reichman, S., et al., Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells, 2017. 35(5): p. 1176-1188.
90. Limnios, I.J., et al., Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res Ther, 2021. 12(1): p. 248.
91. Smith, E.N., et al., Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci. Stem Cell Reports, 2019. 12(6): p. 1342-1353.
92. Marquardt, T.M., T); Ashery-Padan, R (Ashery-Padan, R); Andrejewski, N (Andrejewski, N); Scardigli, R (Scardigli, R); Guillemot, F (Guillemot, F); Gruss, P (Gruss, P), Pax6 Is Required for the Multipotent state of retinal progenitor cells. CELL, 2001. 105(1): p. 43-55.
93. Vugler, A., et al., Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol, 2008. 214(2): p. 347-61.
94. Osafune, K., et al., Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 2008. 26(3): p. 313-315.
95. Cowan, C.A., et al., Derivation of embryonic stem-cell lines from human blastocysts. New England Journal of Medicine, 2004. 350(13): p. 1353-1356.