| 研究生: |
黃韻寧 Yun-Ning Huang |
|---|---|
| 論文名稱: |
以二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行COD之伏安法分析 Using the TiO2/SWCNTs composite modified GCE to analyze COD by voltammetry method |
| 指導教授: |
秦靜如
Ching-Ju Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 化學需氧量 、廢水 、線性掃描伏安法 |
| 外文關鍵詞: | chemical oxygen demand, wastewater, linear sweep voltammetry |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化學需氧量(COD)為水體有機污染程度的控制與監測的水質項目之一,然而現有的分析技術存在有諸多不足之處,例如對於部分生物可分解的含氮有機物無法被完全氧化,分析方法也不適用於分析揮發性物質等。本研究以溶膠凝膠法製備TiO2/SWCNTs複合材料,以滴附的方法修飾複合材料於玻璃碳電極表面,接著以修飾電極進行線性掃描伏安方法探討得到的氧化峰電流反應訊號與COD濃度之間的相關性:標準品(KHP)受到擴散控制,分為兩區段線性關係,分別為10 ~ 100 mg/L區間和150 ~ 500 mg/L區間。葡萄糖受到吸附控制,在10 ~ 100 mg/L區間有較好的線性關係。草酸於電位-0.7 V處的反應可能非單純為擴散或吸附控制影響,而在0.3 V處的反應受吸附控制的影響較顯著。氫氧化四甲銨(TMAH)和單乙醇胺(MEA)皆受到吸附控制,氧化峰電流訊號值與COD濃度之間都呈現負相關。光電廠放流水將個別添加不同COD濃度的TMAH和MEA,濃度與氧化峰電流訊號值皆呈現正相關。淨水廠放流水連續三天分析結果,發現標準分析方法(CODCr)與LSV電化學分析法確實有類似的趨勢。
Chemical oxygen demand (COD) indicates the degree of water pollution by organic compounds and is usually monitored. There are still several problems in the analysis of COD. For example, COD may be underestimated because some nitrogenous organic compounds cannot be oxidized by K2CrO7 or when the organic pollutants are volatile. Analysis of COD via voltammetry using TiO2/SWCNT modified glassy carbon electrode is developed in this work. COD standard (potassium hydrogen phthalate, KHP), modeled COD samples (i.e., glucose, TMAH, MEA and oxalic acid), and wastewater from the water treatment plant are used to investigate the response of the oxidation peak currents to the concentration of COD. It was found that the oxidation peak current had linear relationship to the concentration of COD and such relationship was dependent on the concentration. That is, the linearity were different in 10~100 mg/L and 150 ~ 500 mg/L. For glucose, such relationship was only good when the COD concentration was lower than 100 mg/L. Because the oxidations of TMAH and MEA are adsorption-controlled, the oxidation peak current decreased with increasing TMAH or MEA concentration. However, when TMAH and MEA were added into the TFT-LCD wastewater, the oxidation peak current increased with increasing TMAH or MEA concentration. Voltammetry of wastewater from water treatment plant showed similar results to standard COD analysis method, which suggests that analysis of COD via voltammetry using TiO2/SWCNT modified GCE electrode is a promising technique.
Ahammad, A., Lee, J.-J. and Rahman, M. A., "Electrochemical sensors based on carbon nanotubes", Sensors, 9, pp. 2289-2319, (2009).
Ai, S., Li, J., Yang, Y., Gao, M., Pan, Z. and Jin, L., "Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2–K2Cr2O7 system", Analytica Chimica Acta, 509, pp. 237-241, (2004).
Almeida, C. A., González, P., Mallea, M., Martinez, L. D. and Gil, R. A., "Determination of chemical oxygen demand by a flow injection method based on microwave digestion and chromium speciation coupled to inductively coupled plasma optical emission spectrometry", Talanta, 97, pp. 273-278, (2012).
Baker, J. R., Milke, M. W. and Mihelcic, J. R., "Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals", Water Research, 33, pp. 327-334, (1999).
Bard, A,Faulkner, L. Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2001.
Brown, A. P. and Anson, F. C., "Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface", Analytical Chemistry, 49, pp. 1589-1595, (1977).
Cao, Q., Yu, Q., Connell, D. W. and Yu, G., "Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants", Clean Technologies and Environmental Policy, 15, pp. 871-880, (2013).
Chang, S., Lin, K.-Y. A. and Lu, C., "Efficient adsorptive removal of Tetramethylammonium hydroxide (TMAH) from water using graphene oxide", Separation and Purification Technology, 133, pp. 99-107, (2014).
Chang, S., Lu, C. and Lin, K.-Y. A., "Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon", Applied Surface Science, 326, pp. 187-194, (2015).
Chen, H., Zhang, J., Chen, Q., Li, J., Li, D., Dong, C., Liu, Y., Zhou, B., Shang, S. and Cai, W., "Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor", Analytical Methods, 4, pp. 1790, (2012).
Dresselhaus, Mildred S,Dresselhaus, Gene,Eklund, Peter C. Science of fullerenes and carbon nanotubes: their properties and applications, Academic press, 1996.
Duong, T.-T., Nguyen, Q.-D., Hong, S.-K., Kim, D., Yoon, S.-G. and Pham, T.-H., "Enhanced Photoelectrochemical Activity of the TiO2/ITO Nanocomposites Grown onto Single-Walled Carbon Nanotubes at a Low temperature by Nanocluster Deposition", Advanced Materials, 23, pp. 5557-5562, (2011).
Fakhari, A. R., Rafiee, B., Ahmara, H. and Bagheri, A., "Electrocatalytic determination of oxalic acid by TiO2 nanoparticles/multiwalled carbon nanotubes modified electrode", Analytical Methods, 4, pp. 3314-3319, (2012).
Hejzlar, J. and Kopáček, J., "Determination of low chemical oxygen demand values in water by the dichromate semi-micro method", Analyst, 115, pp. 1463-1467, (1990).
Hung, C.-H., Wu, K.-R., Yeh, C.-W., Sun, J.-C. and Hsu, C.-J., "Photoelectrocatalytic property of microporous Pt-TiO2/Ti electrodes", Thin Solid Films, 529, pp. 19-24, (2013).
Iijima, S. and Ichihashi, T., "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, pp. 603-605, (1993).
Jain, R. and Rather, J. A., "Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode", Colloids and Surfaces B: Biointerfaces, 83, pp. 340-346, (2011).
Jain, R. and Sharma, S., "Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems", Journal of Pharmaceutical Analysis, 2, pp. 56-61, (2012).
Khodadoust, S., Sheini, A. and Armand, N., "Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, pp. 91-95, (2012).
Kim, Y.-C., Sasaki, S., Yano, K., Ikebukuro, K., Hashimoto, K. and Karube, I., "Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals", Analyst, 125, pp. 1915-1918, (2000).
Kim, Y.-C., Sasaki, S., Yano, K., Ikebukuro, K., Hashimoto, K. and Karube, I., "Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis", Analytica Chimica Acta, 432, pp. 59-66, (2001).
Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., Liu, M. and Wang, D., "Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes", Microchimica Acta, 180, pp. 49-58, (2013).
Li, L., Zhang, S., Li, G. and Zhao, H., "Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode", Analytica Chimica Acta, 754, pp. 47-53, (2012).
Martell, A. E.,Smith, R. M., Critical Stability Constants, Springer, 1974.
Mendive, C. B., Bahnemann, D. W. and Blesa, M. A., "Microscopic characterization of the photocatalytic oxidation of oxalic acid adsorbed onto TiO2 by FTIR-ATR", Catalysis Today, 101, pp. 237-244, (2005).
Mendive, C. B., Blesa, M. A. and Bahnemann, D., "The adsorption and photodegradation of oxalic acid at the TiO2 surface", Water Science & Technology, 55, pp. 139-145, (2007).
Muller, K., Lu, D., Senanayake, S. D. and Starr, D. E., "Monoethanolamine Adsorption on TiO2 (110): bonding, structure, and implications for use as a model solid-supported CO2 capture material", The Journal of Physical Chemistry C, 118, pp. 1576-1586, (2014).
Musameh, M., Wang, J., Merkoci, A. and Lin, Y., "Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes", Electrochemistry Communications, 4, pp. 743-746, (2002).
Orozco, J., Fernández-Sánchez, C., Mendoza, E., Baeza, M., Céspedes, F. and Jiménez-Jorquera, C., "Composite planar electrode for sensing electrochemical oxygen demand", Analytica Chimica Acta, 607, pp. 176-182, (2008).
Park, S., Boo, H., Chung, T. D.,, "Electrochemical non-enzymatic glucose sensors", Analytica Chimica Acta, 556, pp. 56-57, (2006).
Pop, A., Ilinoiu, E., Manea, F., Pisoi, I. and Burtica, G., "Determination of organic pollutants from water by electrochemical methods", Environmental Engineering and Management Journal, 10, pp. 75-80, (2011).
Prahas, D., Liu, J., Ismadji, S. and Wang, M.-J., "Adsorption of tetramethylammonium hydroxide on activated carbon", Journal of Environmental Engineering, 138, pp. 232-238, (2012).
Prahas, D., Wang, M., Ismadji, S. and Liu, J., "Enhanced adsorption of quaternary amine using modified activated carbon", Water Science & Technology, 69, pp. 2085-2092, (2014).
Salinas-Torres, D., Huerta, F., Montilla, F. and Morallón, E., "Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes", Electrochimica Acta, 56, pp. 2464-2470, (2011).
Tseng, C.-L., Chen, Y.-K., Wang, S.-H., Peng, Z.-W. and Lin, J.-L., "2-Ethanolamine on TiO2 investigated by in situ infrared spectroscopy. Adsorption, photochemistry, and its interaction with CO2", The Journal of Physical Chemistry C, 114, pp. 11835-11843, (2010).
Vasudevan, D. and Anantharaman, P., "Reduction of 1-nitroso-2-naphthol at a Ti/ceramic TiO2 cathode in different media", Journal of Applied Electrochemistry, 24, pp. 559-563, (1994).
Wang, C., Wu, J., Wang, P., Ao, Y., Hou, J. and Qian, J., "Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand", Analytica Chimica Acta, 767, pp. 141-147, (2013).
Wang, H., Zhong, S., He, Y. and Song, G., "Molecular sieve 4A–TiO2 –K2 Cr2 O7 coexisted system as sensor for chemical oxygen demand", Sensors and Actuators B: Chemical, 160, pp. 189-195, (2011).
Wang, J., "Carbon-nanotube based electrochemical biosensors: a review", Electroanalysis, 17, pp. 7-14, ( 2005).
Wang, J., Wu, C., Wu, K., Cheng, Q. and Zhou, Y., "Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film", Analytica Chimica Acta, 736, pp. 55-61, (2012).
Yu, H., Wang, J., Zhang, S., Li, X. and Zhao, H., "Layered Fe (III) doped TiO2 thin-film electrodes for the photoelectrocatalytic oxidation of glucose and potassium hydrogen phthalate", Chinese Science Bulletin, 56, pp. 2475-2480, (2011).
Yuan, S., Mao, R., Li, Y., Zhang, Q. and Wang, H., "Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determination of chemical oxygen demand", Electrochimica Acta, 60, pp. 347-353, (2012).
Zhao, F., Yan, F., Qian, Y., Xu, Y. and Ma, C., "Roughened TiO2 film electrodes for electrocatalytic reduction of oxalic acid to glyoxylic acid", Journal of Electroanalytical Chemistry, 698, pp. 31-38, (2013).
Zheng, Y., Yang, C., Pu, W. and Zhang, J., "Determination of oxalic acid in spinach with carbon nanotubes-modified electrode", Food Chemistry, 114, pp. 1523-1528, (2009).
Zhu, X., Yuan, C., Bao, Y., Yang, J. and Wu, Y., "Photocatalytic degradation of pesticide pyridaben on TiO2 particles", Journal of Molecular Catalysis A: Chemical, 229, pp. 95-105, (2005).
成會明,「奈米碳管」,五南圖書出版社,2004
林耀堅,「過硫酸鹽光照反應搭配二氧化鈦光觸媒降解TMAH(氫氧化四甲銨)之研究」,中華民國環境工程學會廢水處理技術研討會,2010
洪昭南,徐逸明,王宏達,「奈米碳管結構及特性簡介」,化工,第49 卷,第23-30頁,2002
胡啟章,「電化學原理與方法」,五南圖書出版社,2011
格里弟,「電極動力學」,財團法人徐氏基金會,1996
陳凱欣,「以溶膠凝膠法製備MWCNTs/TiO2及其光催化特性」,碩士論文,國立中央大學環境工程研究所,中壢,2013
曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導複合材料之研究」,博士論文,國立成功大學化工程系,臺南,2009
楊藏嶽,楊慶成,「中國電機工程師手冊第二十二篇 電化學及應用」,中國電機工程學會,1992
歐陽姍佩,「鹼性溶液中鎳大環錯鹽聚合膜修飾電極甲醇及苯甲醇之氧化電觸行為研究」,碩士論文,國立台南師範學院自然科學教育學系,臺南,2004
謝奇旭,「氫氧化四甲基銨管制所新增「污水下水道使用費」估算及建議因應對策」,陽光綠地節能講座,No.3,第1-9頁,2009