跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林延澤
YEN-TSE LIN
論文名稱: A356及A206合金重力鑄造—模流分析熱裂及縮孔之研究
Mold Flow Analysis of Hot Tearing and Shrinkage Porosity in Gravity Casting of A356 and A206 Aluminum Alloys
指導教授: 施登士
Deng-Shi Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 92
中文關鍵詞: 鋁合金孔隙率熱裂
外文關鍵詞: aluminum alloy, hot tearing, porosity
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對 A206(Al-Cu-Mg)及 A356(Al-Si-Mg)鋁合金在重力鑄造過程中之熱裂與孔隙缺陷進行模擬與實驗分析。模具設計採用中心澆口搭配六根不同長度之細長鑄件,並於其尾端配置小冒口;這些冒口之方向故意設計與重力方向相反,以避免有效補縮,使鑄件於凝固時段產生應力累積。評估不同冒口尺寸(Ø21.2mm 與 Ø25.7 mm)下的斷面模數對最大主應力與熱裂風險之影響。再配合MAGMA 模擬用以比對熱裂嚴重之區域的應力值大小及溫度變化。A206 合金在冒口尺寸為 Ø21.2 mm 之下顯示高熱裂敏感性,其臨界主應力分布可分為四區域,最高可達 21 MPa,熱裂發生與澆口與鑄件模數比 S/C 具高度關聯。A356 則在相同模具尺寸(Ø21.2 mm)下並未觀察到熱裂,顯示其具優異抗裂能力,但發現加大冒口尺寸能夠讓模數比 S/C 的應力降幅增大,進一步降低熱裂風險。進一步透過冷卻速率與孔隙率回歸模型建構,推得 A206 合金具有較低孔隙生成傾向,尤其在 Ø21.2 mm 冒口設計下。模擬亦指出提高模溫可有效降低主應力並抑制熱裂生成,惟 HTS 指標未能完全反映熱裂發生位置與應力交互關係。綜合而言,本研究建立一套整合模數比、應力分布與孔隙生成預測模型,對鋁合金鑄件設計與製程優化提供具體依據。


    This study investigates hot tearing and porosity defects in A206 (Al-Cu-Mg) and
    A356 (Al-Si-Mg) aluminum alloys during the gravity casting process through both simulation and experimental analysis. The mold design incorporates a central gate feeding
    six elongated castings of varying lengths, each equipped with a small riser at its end.
    These risers are deliberately oriented against the direction of gravity to inhibit effective
    feeding, thereby promoting stress accumulation during solidification. The effect of riser
    diameter (Ø21.2 mm and Ø25.7 mm) on the section modulus and its influence on maximum principal stress and hot tearing susceptibility was evaluated. MAGMA simulation
    was employed to correlate the magnitude of stress and thermal evolution in regions
    exhibiting severe hot tearing.
    The A206 alloy demonstrated high hot tearing sensitivity under the Ø21.2 mm
    riser condition. Its critical principal stress distribution could be divided into four zones,
    with a peak value reaching 21 MPa. The occurrence of hot tearing was strongly correlated with the modulus ratio between the sprue and casting (S/C). In contrast, no hot
    tearing was observed in the A356 alloy under the same mold configuration (Ø21.2 mm),
    indicating its superior resistance to cracking. Furthermore, increasing riser size resulted
    in a greater reduction in stress associated with the S/C modulus ratio, thereby lowering
    the risk of hot tearing.
    A regression model constructed using cooling rate and porosity data revealed that
    the A206 alloy exhibits a lower tendency for porosity formation, particularly under the
    Ø21.2 mm riser design. Simulations also indicated that elevating the mold temperature
    effectively reduced principal stress and suppressed hot tear formation. However, the
    HTS (Hot Tearing Susceptibility) index did not fully capture the spatial correlation between stress concentration and actual tear initiation.
    In summary, this study establishes an integrated predictive framework combining
    modulus ratio, stress distribution, and porosity formation to provide a quantitative foundation for optimizing aluminum alloy casting design and process parameters.

    目錄 致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 IX 第一章 緒論 1 第二章 文獻回顧 2 2.1 鋁合金介紹 2 2.1.1 鋁合金簡介 2 2.1.2 A206合金介紹 2 2.1.3 A356合金介紹 3 2.2 鋁合金熱裂缺陷原因 4 2.2.1 熱裂形成原因 4 2.2.2 A356及A206中成分對熱裂的影響 5 2.2.3 模具溫度對熱裂的影響 8 2.2.4 澆鑄溫度對熱裂的影響 10 2.3 熱裂分析 12 2.3.1 熱裂的熱機耦合機制與影響因子 12 2.3.2 A356及A206補縮能力比較 13 2.3.3 熱裂評估指標模型與其理論依據 15 2.3.4 熱裂形成機構與敏感性理論 16 2.4 鋁合金鑄造孔洞之形成與控制 17 2.4.1 孔洞類型分類與成因概述 17 2.4.2 氣孔生成與影響因子 18 2.4.3 矽含量對鋁合金縮孔行為之影響 18 2.4.4 氫含量對鋁合金的影響 19 2.4.5 凝固速率對鋁合金孔隙形成之影響 21 第三章 實驗方法與步驟 23 3.1 實驗材料 23 3.2 實驗設備與儀器 23 3.3 實驗步驟 28 第四章 結果與討論 32 4.1 斷面模數與應力值 32 4.1.1 斷面模數 32 4.1.2 熱裂缺陷與鑄件長度的關係 — A206 (Riser Ø21.2 mm) 33 4.1.3 模數比與鑄件長度 — A356 (Riser Ø21.2 mm& Ø25.7 mm) 39 4.2 計算最大熱裂應力值 44 4.2.1 熱裂應力 44 4.2.2 熱裂應力臨界值— A206 (Riser Ø21.2 mm) 45 4.2.3 應力最大值— A356 (Riser Ø21.2 mm& Ø25.7 mm) 48 4.3 不同參數下的巨觀孔隙率(A206&A356) 53 4.3.1 理論孔隙率 53 4.3.2 孔隙率比較(Magma porosity,金相孔隙率,理論孔隙率) 54 4.3.3 由孔隙率比較結果推論方程式 57 4.4 澆鑄溫度及模溫對鑄件缺陷的影響 65 4.4.1 Hot Tearing Susceptibility 65 4.4.2 A206鋁合金在不同鑄造參數下的熱裂傾向 65 4.4.3 A356鋁合金在不同鑄造參數下的熱裂傾向 70 第五章 結論 77

    [1] Hosseini, H. R. M., Ghomashchi, R., & Vali, H. (2015). Effect of TiB₂ nanoparti-cles addition on hot tearing resistance of A206 aluminum alloy. Materials Sci-ence and Engineering: A, 625, 283–291.
    [2] Campbell, J. (2015). Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design. Butterworth-Heinemann.
    [3] Emadi, D., & Whiting, L. (2004). Development of A206 Alloy for Automotive and Aerospace Applications. AFS Transactions, 112, 651–660.
    [4] Wang, Q. G., Apelian, D., & Lados, D. A. (2001). Fatigue behavior of A356-T6 aluminum cast alloys. Part I: Effect of casting defects. Journal of Light Metals, 1, 73–84.
    [5] Backerud, L., G. Chai, and J.J.A.F.s.S. Tamminen, Inc., ,, Solidification charac-teristics of aluminum alloys. Vol. 2. Foundry alloys. 1990: p. 266.
    [6] Samuel, F. H., Samuel, A. M., & Doty, H. W. (1997). The effect of silicon content on the mechanical properties of 319-type alloys. Journal of Materials Science, 32, 5645–5651.
    [7] Fleming, “Solidification Processing”, pp. 252–258.
    [8] Edward, Frary and Jeffries, The Aluminium Industry, McGraw-Hill, London and New York.
    [9] Frankel, Über Silizium-Aluminium-Legierungen, Z. Anorg. Chem. Vol. 58, pp. 154 (1908)
    [10] Hamadellah, A., A. Bouayad, and C.J.J.o.M.P.T. Gerometta, Hot tear characteri-zation of AlCu5MgTi and AlSi9 casting alloys using an instrumented con-strained six rods casting method. 2017. 244: p. 282-288.
    [11] F.D’Elia, et al., Hot tearing mechanisms of B206 aluminum–copper alloy. 2014. 64: p. 44-55.
    [12] Hot Tearing in Aluminum Cast Alloys: Measures and Effect of Process Variables
    [13] M.R. Nasr Esfahani, B. Niroumand Study of hot tearing of A206 aluminum alloy using Instrumented Constrained T-shaped Casting method
    [14] C. Monroe, C. Beckermann Development of a Hot Tear Indicator for Steel Castings
    [15] totalmateria Casting Defects: Hot Tearing
    [16] Sindo Kou A criterion for cracking during solidification 2015 p. 366-374
    [17] Akhyar Hot Tearing, Parameters, and Mould Types for Observation – Review 2022
    [18] LE Qi-chi,LI Hao-yu,BAI Yuan-yuan,ZHANG Hai-tao Study on Solidification Contraction of Aluminum Alloys p. 646-650
    [19] Vaibhav Ingle1 Madhukar Sorte Defects, Root Causes in Casting Process and Their Remedies: Review 2017 p. 47-54
    [20] Sumit Shukla Study of Porosity Defect in Aluminum Die Castings and its Eval-uation and Control for Automotive Applications 2020
    [21] Agnes M. Samuel 1 , Ehab Samuel 1 , Victor Songmene A Review on Porosity Formation in Aluminum-Based Alloys
    [22] Samuel, A.M., et al., A review on porosity formation in aluminum-based alloys. 2023. 16(5): p. 2047.
    [23] Gharagozloo, M., Development of parameters of GMAW-P for the wire and arc additive manufacturing (WAAM) of aluminum alloys. 2020, École de technologie supérieure.
    [24] Akhyar, H., V. Malau, and P.J.R.i.P. Iswanto, Hot tearing susceptibility of alu-minum alloys using CRCM-Horizontal mold. 2017. 7: p. 1030-1039.
    [25] A356、A206及AC2B合金重力鑄造分析—孔洞、氧化膜及熱裂之基礎研究
    [26] M.R. Nasr Esfahani, B. Niroumand Study of hot tearing of A206 aluminum alloy using Instrumented Constrained T-shaped Casting method
    [27] S. Li,K. Sadayappan and D. Apelian Characterisation of hot tearing in Al cast alloys: methodology and procedures
    [28] Effect of Silicon on Castability of Al-Zn-Mg Aluminum Alloy -Yu Sidney
    [29] A. M. Samuel, E. Samuel, F. H. Samuel, "A Review on Porosity Formation in Aluminum-Based Alloys", Materials, vol. 16, no. 5, p. 2047, 2023.
    [30] Kun-Dar Li, Edward Chang A Study on the Mechanism of Porosity Formation in Aluminum Alloy Castings
    [31] T. W. Clyne, G.J. Davies, Solidification and casting of metals, The Metals Soci-ety (1979) 275-278.

    QR CODE
    :::