| 研究生: |
呂明怡 ming-yi Lu |
|---|---|
| 論文名稱: |
新型高分子電解質之合成與性質探討 New polymer electrolyte for lithium battery base PVDF-HFP system |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 鋰電池 、高分子電解質 、孔洞式高分子電解質 |
| 外文關鍵詞: | polymer electrolyte, lithium battery, porous-type polymer electrolyte |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
小型二次電池中,鋰二次電池具有高工作電壓、循環壽命長、使
用溫度範圍廣且無記憶效應等優點,而一般電池因受限於電解液的儲
存,無法做到輕薄短小的產品,所以將液態電解質用固態的高分子電
解質取代,可使產品不受形狀與尺寸大小的限制。本篇實驗主要是探
討高分子電解質PEO/LiClO4摻入不同含量的聚苯胺衍生物高分子以
製備成乾式高分子電解質膜及PVdF-HFP 摻入不同比例之
poly-(ethylene glycol)- block-poly(propylene glycol)-block-poly(ethylene
glycol)高分子,再以相轉變法或直接揮發成膜法製備孔洞式高分子
膜,再浸泡1M LiClO4 EC/PC (V/V =1:1)溶液以製成孔洞式高分子電
解質的各種性質。由於乾式高分子電解質系統無法達到可商業化的離
子導電度,所以本實驗的探討著重於孔洞式的高分子電解質膜部分,
在此部分我們使用兩種不同分子量的共聚高分子:poly(ethylene
glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol),分別
為P123 (Mw=5750)及F108(Mw=14600)。在相轉變法製備PVdF-HFP
高分子膜時,摻入不同含量的P123 或F108 可修飾高分子膜的孔洞結
構,進而改善高分子電解質膜的電解液吸附量及漏液情形。實驗結果
發現隨著P123 或F108 含量的增加,高分子膜的孔洞變小且密度增
加,並在分別摻入70 wt%的P123 或50 wt%的F108 時,混合高分子
膜會有孔道的形成,含有P123 或F108 之混合高分子電解質膜,導電
度較高且漏液量較少,室溫導電度可達4 × 10-3 S/cm,其可耐電壓高
達5.0 V,達到商業化應用可能。
Abstract
Rechargeable lithium ionic battery, compared to other secondary
batteries, has the advantages of high working potential, high specific
energy, wide applied temperature and no memory effect. However, in
order to make a small light-weight batteries, a solid electrolyte was
needed. Solid polymer electrolytes can be categorized into three types:
dry-type polymer electrolyte, gel-type polymer electrolyte, and
porous-type polymer electrolyte. In this studies, two systems were studied:
polyaniline derivative was blended with PEO-LiClO4 electrolyte to
increase the ionic conductivity of the dry-type polymer electrolyte and
PVDF-HFP was mixed with polyalkoxy block copolymer such as P123
(Mw=5750) or F108 (Mw=14600) to form porous-type polymer
membranes. The porous polymer membranes were then sock in
LiClO4-EC/PC solution to form porous-type electrolytes. It was found
that the ionic conductivity of dry-type polymer electrolyte is too low to be
commercially viable. Therefore, the study is mainly focused on the
porous-type polymer electrolyte. The porous membranes were prepared
by both phase inversion and evaporating methods. They were then
immersed in 1 M LiClO4 –EC/PC (1:1) solution to form porous polymer
electrolytes. The pore structure and density of polymer membrane
varied with the ratios of P123 (or F108). Low solution leakage, high
conductivity polymer electrolyte was found when 30 ~ 50 wt% of P123
was blend with PVDF-HFP. The room temperature conductivity of
these hybrid porous polymer electrolytes was up to 4 × 10-3 S/cm and they
can stand up to 5.0 V. They have great potential to be applied in lithium
ion batteries.
1. J. Hajek, French Patent 1949, 8, 10.
2. 費定國、高昀成“碳材料在鋰電池之發展與應用”工業材料 121期,頁80(86.1)
3. 林宗儀,國立成功大學化學工程研究所碩士論文,2000
4. 姚慶意“高分子鋰電池”工業材料 122期,頁117(86.2)
5. P. V. Wright, D. E. Fenton, J. M. Parke, Polymer 1973, 14, 589.
6. M. Armand, J. M. Chabagno, M. Duclot, Second International Meeting on Solid Eletrolytes, St. Andrews, Scotland, Extended Abstracts(Sept. 1978)
7. C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud Soild State Ionics 1983, 11, 91.
8. D. F. Shriver, M. A. Ratner, Chem. Rev. 1988, 245, 4.
9. 楊家諭、鄭程鴻、邱永城“鋰離子二次電子電解質介紹”工業材料 110期,頁82(85.2)
10. D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 14, 1973, 589.
11. M. B. Armand, J. M. Chabagno, M. Duclot, Extended Abstract, St. Andrews, Scotland, 1978, September 20.
12. M. B. Armand, J. M. Chabagno, and M. Duclot, P. Vashista, J. N. Mundy, and G. K.Shenoy, Editors, p.131-136, Elsevier, North-Holland, Amsterdam, Netherlands (1979).
13. J. R. MacCallum, C. A. Vincent, Polymer Electrolyte Reviews-1, Elsevier Applied Science, London,UK (1987).
14. J. R. MacCallum, C. A. Vincent, Polymer Electrolyte Reviews-2, London, UK (1989).
15. R. Borkowska, J. Laskowski, J. Plocharski, J. Przyluski, W. Wieczorek J. Appl. Electrochem. 1993, 23, 991.
16. E. Quartarone, P. Mustarelli, A. Magistris, Solid State Ionics, 1998, 110, 1.
17. W. Wieczorek, J. R. Stevens J .Phys. Chem. B 1997,101, 1529.
18. C. Booth, C. V. Nicholas, D. J. Wilson, Elsevier Applied Science, London, UK (1989).
19. J. F. LeNest, S. Callens, A. Gandini, M. Armand Electrochim. Acta 1992, 37, 1585.
20. Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo J. Mater. Sci. 1987, 22, 1845.
21. G. B. Appetecchi, G. Dautzenberg, B. Scrosati J. Electrochem. Soc. 1996, 143, 6.
22. G. B. Apetecchi, F. Croce, B. Scrosati J. Power Sources 1997, 66, 77.
23. M. C. Borghini, M. Mastragostino, S. Passerini, B. Scrosati J. Electrochem. Soc. 1995, 142, 2118.
24. K. M. Abraham and M. Alamgir, U.S. Patent No. 5,219,679 (1993).
25. F. Croce, F. Gerace, G. Dautzenberg, S. Passerini, G. B. Appetecchi, B.Scrosati Electrochim. Acta 1994, 39, 2187.
26. S. Slane, M. Salomon J. Power Sources 1995, 55, 7.
27. G. Dautzenberg, F. Croce, S. Passerini, B. Scrosati Chem. Mater. 1994, 6, 538.
28. D. Peramunage, D. M. Pasquariello, K. M. Abraham J. Electrochem. Soc. 1995, 142, 1789.
29. H. S. Choe, B. G. Carroll, D. M. Pasquariello, K. M. Abraham Chem. Mater. 1997, 9, 369.
30. F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon Chem. Mater. 1993, 5, 1268.
31. Z. Wang, B. Huang, H. Huang, R. Xue, L. Chen, F. Wang, J. Electrochem. Soc. 1996, 143, 1510.
32. B. Huang, Z. Wang, G. Li, H. Huang, R. Xue, L. Chen Solid State Ionics 1996, 85, 79.
33. Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen, J. Electrochem. Soc. 1997, 144, 778.
34. Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen Solid State Ionics 1999, 121, 141.
35. K. M. Abraham, H. S. Choe, D. M. Pasquariello Electrochim. Acta 1998, 43, 2399.
36. P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane, M. Salomon Electrochim. Acta 1995, 40, 2137.
37. X. Liu, T. Osaka J. Electrochem. Soc. 1997, 144, 3066.
38. E. Quartarone, C. Tomasi, P. Mustarelli, G. B. Appetecchi, F. Croce Electrochim. Acta 1998, 43, 1435.
39. A. M. Sukeshini, A. Nishimoto, M. Watanabe Solid State Ionics 1996, 86-88, 385.
40. H. Y. Sung, Y. Y. Wang, C. C. Wan J. Electrochem. Soc. 1998, 145, 1207.
41. Y. Y. Wang, C. C. Wan, H. Y. Sung, U.S. Patent No. 5, 1999, 874, 185.
42. C. Capiglia, Y. Saito, H. Yamamoto, H. Kageyama, P. Mustarelli Electrochim. Acta 2000, 45, 1341.
43. Y. Saito, C. Capiglia, H. Yamamoto, P. Mustarelli J. Electrochem. Soc. 2000, 147, 1645.
44. T. Michot, A. Nishimoto, M. Watanabe Electrochim. Acta 2000, 45, 1347.
45. M. G. Fiona, “Solid Polymer Electrolyte:Fundamentals and Tech- nological Applications” Chap. 6, 1997, p95-123.
46. H. Cheradame, J. F. LeNest, A. Gandini, M. Leveque J. Power Sources 1985, 14, 27.
47. P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane, M. Salomon Electrochim. Acta 1995, 40, 2137.
48. Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen Solid State Ionics 1999, 121, 141.
49. Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen J. Electrochem. Soc., 1997, 144, 778.
50. S. B. Ross-Murphy, “Formation, structure and properties of physical networks”, in Polymer Networks.¾Principles of Their Formation, Structure and Properties, R. F. T. Stepto, Editor, p.288-315, Blackie Academic & Professional, London, UK (1998).
51. L. H. Sperling, Introduction to Physical Polymer Science, 2nd ed., p.382-457, John Wiley & Sons, New York, USA (1993).
52. 楊長榮、唐宏怡、張國恩“高分子鋰二次電池電解質材料介紹”工業材料 133期,頁93(87.1)
53. E. Tsuchida, H. Ohno, K. Tsunemi Electrochim. Acta, 1983, 28, 591.
54. K. Tsunemi, H. Ohno, E. Tsuchida Electrochim. Acta 1983, 28, 833.
55. A. S. Gozdz, J. M. Tarascon, P. C Warren U.S. Patent No.5, 1995, 460, 904.
56. J. M. Tarascon, A. S. Gozdz, C. N. Schmutz, F. Shokoohi, P. C. Warren Solid StateIonics, 1996, 86-88, 49.
57. Z. Jiang, B. Carroll, and K. M. Abraham Electrochim. Acta 1997, 42, 2667.
58. P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, T. Sakai, Y. Saito, M. Mizuhata, A. Kajinami, S. Deki Solid State Ionics 1999, 126, 285.
59. G. B. Appetecchi, F. Croce, A. De Paolis, B. Scrosati J. Electroanal. Chem. 1999, 463, 248.
60. K. M. Abraham, Z. Jiang, B. Carroll Chem. Mater. 1997, 9, 1978.
61. I. M. Ward, M. J. Williamson, H. V. St. A. Hubbard, J. P. Southall, G. R. Davies J. Power Sources, 1999, 81-82, 700.
62. P. E. Stallworth, J. J. Fontanella, M. C. Wintersgill, C. D. Scheidler, J. J. Immel, S. G. Greenbaum, A. S. Gozdz J. Power Sources, 1999, 81-82, 739.
63. V. Arcella, A. Sanguineti, E. Quartarone, P. Mustarelli J. Power Sources 1999, 81-82, 790.
64. F. Boudin, X. Andrieu, C. Jehoulet, I. I. Olsen J. Power Sources, 1999, 81-82, 804.
65. C. Capiglia, Y. Saito, H. Yamamoto, H. Kageyama, P. Mustarelli, Electrochim. Acta, 2000, 45, 1341.
66. Y. Saito, C. Capiglia, H. Yamamoto, P. Mustarelli J. Electrochem. Soc. 2000, 147, 1645.
67. T. Michot, A. Nishimoto, M. Watanabe Electrochim. Acta 2000, 45, 1347.
68. R. D. Armstrong, M. D. Clarke, Solid State Ionics 1984,11, 305
69. J. O. Besenhard, In Handbook of Battery Materials; Wiley-VCH:
Weinheim, Germany, 1999.
70. E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc. 1997, 144, 208.
71. N. K. Chung, Y. D. Kwon, D. Kim, Journal of Power Sources 2003, 124, 148-154.
72. S. K. Chi, M. Oh Seung, Electrochimica Acta 2001, 46, 1323.
73. S. Qiao, Y. Mingxin, Z. Xiao, Y. Yushun, W. Chunrong, Journal of Power Sources 2002, 103, 286.
74. Hyo-Sik, Min.; Jang-Myoun, Ko.; Dong-Won Kim.; Journal of Power Sources 2003, 119-121, 469-472.
75. K. M. Kim, N.-G. Park, K. S. Ryu, S. H. Chang, Polymer, 2002, 43, 3951.
76. J. M. Song, H. R. Kang, S.W. Kim, W. M. Lee, H. T. Kim, Electrochimica Acta, 2003, 48 ,1339.
77. E. Quartarone, P. Mustarelli, A. Magistris, J.Phys. Chem. B 2002,106,10828.
78. Y. K. Mikhail, S. M. N. Nikolai, V. B. Elena, V. K. Alexander, Macromolecules 2000, 33, 3305-3313.
79. R. Josias, L. Watson, Langmuir, 1998, 14, 750-756.
80. B. F. Antonio, Microporous and Mesoporous Materials, 2004, 67, 273.
81. A. M. Rocco, C. P. D. Fonseca, R. P. Pereira, Polymer, 2002, 43, 3601-3609.
82. M. A. K. L. Dissanayake, Roger Frech, Macromolecules, 1995, 28, 5312-5319.
83. T. Gozdz, C. Schmutz, J. M. Tarascon, U. S. Patent , 5,296,318.
84. J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, P. C. Warren, Solid State Ionics, 1996, 86-88, 49.