跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張芷瑛
Chih-Ying Chang
論文名稱: Study of Qubit Dispersive Readout Optimization
指導教授: 陳永富
Yung-Fu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 58
中文關鍵詞: 超導量子位元電路量子電動力學讀取優化跨閘量子位元
外文關鍵詞: Superconducting qubit, Circuit quantum electrodynamics, Readout Optimization, Transmon qubit
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在量子計算領域中,精確地控制和讀取量子位元(qubits)是至關重要的。實現高保真度的讀取需要進行徹底的優化過程。在我們的研究中,我們專注於在超導電路框架內優化讀取過程。具體來說,我們設計了一個電容耦合到讀取諧振器的跨閘(transmon)量子位元,並精心選擇了參數來優化讀取條件。我們採用了色散讀取方案,其中量子位元狀態信息編碼在通過讀取諧振器的散射光中。通過優化讀取設置和條件,我們能夠高效準確地確定量子位元的狀態。


    In the field of quantum computing, precise control and readout of qubits are crucial. Achieving high-fidelity readout requires a thorough optimization procedure. In our study, we focus on optimizing the readout process within the framework of superconducting circuits. Specifically, we design a transmon qubit capacitively coupled to a readout resonator, with carefully chosen parameters to optimize the readout conditions. We employ a dispersive readout scheme, where the qubit-state information is encoded in the scattered light passing through the readout resonator. By optimizing the readout setup and conditions, we can efficiently and accurately determine the state of the qubit.

    Abstract ii Contents i List of Figures iii List of Tables v Glossary vi Acronym........................................ vi Symbol ........................................ vi 1 Introduction 1 2 Circuit QED 4 2.1 Quantum LC Circuit ............................... 5 2.2 Quarter Waveguide Resonator....................... 6 2.3 Superconducting Qubit............................. 9 2.3.1 Bloch Sphere .................................. 10 2.3.2 Josephson Junction............................. 11 2.3.3 Cooper Pair Box ............................... 13 2.3.4 Transmon ...................................... 14 2.4 circuit QED...................................... 17 2.4.1 Jaynes Cumming Model .......................... 18 2.4.2 Dispersive Coupled Regime ..................... 20 2.5 Qubit State Readout ............................. 23 3 Design and Experiment Setup ....................... 28 3.1 Layout Design.................................... 28 3.1.1 Readout Resonator.............................. 30 3.1.2 Xmon Qubit..................................... 31 3.1.3 Coupling Strength ............................. 32 3.2 Measurement Setup................................ 33 3.3 IQ demodulation ................................. 35 4 Experimental Result ............................... 37 4.1 Spectroscopy measurement......................... 38 4.1.1 One-tone spectroscopy ......................... 38 4.1.2 Two-tone spectroscopy.......................... 39 4.2 Puls measurement ................................ 42 4.2.1 Time Rabi and power Rabi ...................... 43 4.2.2 Readout Calibration ........................... 45 4.2.3 T1 relaxation ................................. 48 4.2.4 Ramsey fringe.................................. 48 4.2.5 Readout pulse time trace....................... 49 4.2.6 Single shot measurement........................ 50 5 Conclusion and Future Works ........................55 Bibliography..........................................56

    [1] Alexandre Blais, Steven M Girvin, and William D Oliver. Quantum information pro-
    cessing and quantum optics with circuit quantum electrodynamics. Nature Physics,
    16(3):247–256, 2020.
    [2] Martin G ̈oppl, A Fragner, M Baur, R Bianchetti, Stefan Filipp, Johannes M Fink, Pe-
    ter J Leek, G Puebla, L Steffen, and Andreas Wallraff. Coplanar waveguide resonators
    for circuit quantum electrodynamics. Journal of Applied Physics, 104(11):113904,
    2008.
    [3] David Isaac Schuster. Circuit quantum electrodynamics. Yale University, 2007.
    [4] Zijun Chen. Metrology of Quantum Control and Measurement in Superconducting
    Qubits. PhD thesis, UC Santa Barbara, 2018.
    [5] Jay Gambetta, Alexandre Blais, Maxime Boissonneault, Andrew A Houck, DI Schus-
    ter, and Steven M Girvin. Quantum trajectory approach to circuit qed: Quantum
    jumps and the zeno effect. Physical Review A, 77(1):012112, 2008.
    [6] Rainee N Simons. Coplanar waveguide circuits, components, and systems. John
    Wiley & Sons, 2004.
    [7] David M Pozar. Microwave engineering. John wiley & sons, 2011.
    [8] John Clarke, Andrew N Cleland, Michel H Devoret, Daniel Esteve, and John M
    Martinis. Quantum mechanics of a macroscopic variable: the phase difference of a
    josephson junction. Science, 239(4843):992–997, 1988.
    [9] Brian David Josephson. Possible new effects in superconductive tunnelling. Physics
    letters, 1(7):251–253, 1962.
    [10] Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, David I Schuster, Jo-
    hannes Majer, Alexandre Blais, Michel H Devoret, Steven M Girvin, and Robert J
    Schoelkopf. Charge-insensitive qubit design derived from the cooper pair box. Phys-
    ical Review A, 76(4):042319, 2007.
    [11] Audrey Cottet. Implementation of a quantum bit in a superconducting circuit. PhD
    thesis, PhD Thesis, Universit ́e Paris 6, 2002.
    [12] R Miller, TE Northup, KM Birnbaum, ADBA Boca, AD Boozer, and HJ Kimble.
    Trapped atoms in cavity qed: coupling quantized light and matter. Journal of Physics
    B: Atomic, Molecular and Optical Physics, 38(9):S551, 2005.
    [13] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and
    William D Oliver. A quantum engineer’s guide to superconducting qubits. Applied
    physics reviews, 6(2):021318, 2019.
    [14] Rami Barends, Julian Kelly, Anthony Megrant, Daniel Sank, Evan Jeffrey, Yu Chen,
    Yi Yin, Ben Chiaro, Josh Mutus, Charles Neill, et al. Coherent josephson qubit suit-
    able for scalable quantum integrated circuits. Physical review letters, 111(8):080502,
    2013.
    [15] Terry C Edwards and Michael B Steer. Foundations for microstrip circuit design.
    John Wiley & Sons, 2016.
    [16] Sebastian Probst, FB Song, Pavel A Bushev, Alexey V Ustinov, and Martin Weides.
    Efficient and robust analysis of complex scattering data under noise in microwave
    resonators. Review of Scientific Instruments, 86(2):024706, 2015.
    [17] Deanna M Abrams, Nicolas Didier, Shane A Caldwell, Blake R Johnson, and Colm A
    Ryan. Methods for measuring magnetic flux crosstalk between tunable transmons.
    Physical Review Applied, 12(6):064022, 2019.
    [18] X Dai, DM Tennant, R Trappen, AJ Martinez, D Melanson, MA Yurtalan, Y Tang,
    S Novikov, JA Grover, SM Disseler, et al. Calibration of flux crosstalk in large-scale
    flux-tunable superconducting quantum circuits. PRX Quantum, 2(4):040313, 2021.
    [19] WH Haydl, T Kitazawa, J Braunstein, R Bosch, and M Schlechtweg. Millimeter-
    wave coplanar transmission lines on gallium arsenide, indium phosphide and quartz
    with finite metalization thickness. In 1991 IEEE MTT-S International Microwave
    Symposium Digest, pages 691–694. IEEE, 1991.
    58

    QR CODE
    :::