跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱子軒
TZU-HSUAN CHIU
論文名稱: 電混凝法應用於金屬表面處理廢水對於處理效率的影響
Effect of Electrocoagulation Applied to Metal Finishing Industry Treatment Wastewater on Treatment Efficiency
指導教授: 林伯勳
PO-HSUN LIN
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所在職專班
Executive Master of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 電混凝金屬表面處理廢水最適初始pH最適設定電流
外文關鍵詞: electrocoagulation, metal finishing industry, optimal initial pH, optimal current density
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於國內對水環境保護意識高漲,在環保署106年修正發布擴大重金屬加嚴管制對象,以及地方政府劃設水污染總量管制區或加嚴放流水標準,業者必須採取更為有效的水處理技術。另一方面,為促進水資源永續利用,亦推動再生水資源發展,因此電混凝法(electro-coagulation,EC)技術,因為擁有較佳的處理效果及具有廢水回收之潛力,近年來逐受重視,此技術與傳統化學混凝法相比有眾多優點,在管末處理上更具有優勢,且能與其他處理技術進行聯用,提升此法的應用價值。另外在廢(污)水回收技術上,因為有較好的處理效率,亦可作為薄膜處理程序的前處理應用。
    本研究將電混凝方法的影響因子做一完整整理,並對該案例廠水質條件進行分析,與多數電混凝法研究最大不同之處,在於將使用連續流進行廢水處理,首先,決定整個電混凝程序中最重要的反應槽參數,包含電極材料、電極間距、電極配置等等,再來,研究過程中以初始的pH值及設定電流作為實驗的變數,藉由改變這兩項對電混凝最重要的操作參數,做出一最佳化的操作條件範圍,實驗結果,以最適初始pH為8.5,及在低/中導電度廢水以40 A至45 A、在高導電度廢水以45 A至50 A操作。最後,綜合各項影響因子與反應現象,提出操作上應注意的事項及常見問題,冀望日後可作為他廠設計操作之依據。


    In recent years, due to the rising awareness of water environmental protection in Taiwan, Environmental Protection Administration (EPA) revised and announced Effluent Standards the expansion of heavy metals in 2016. , and the local government designated total water pollution control areas or tightened Effluent Standards. The industry must take more effective measures water treatment technology. On the other hand, in order to promote the sustainable use of water resources and promote the development of renewable water resources, Electro-coagulation (EC) technology has gradually received attention, because of better treatment effect and potential for waste water recycling, compared with the traditional chemical coagulation method, this technology has many advantages. It has more advantages in wastewater treatment, and can be combined with other water treatment technologies to enhance the application value of this method. In addition, in wastewater recycling technology, because of its better treatment efficiency, it can also be used as a pretreatment application for membrane treatment procedures.
    In this study, the influence factors of the EC method are sorted out, and the water quality conditions of the case plant are analyzed. The biggest difference from most EC studies is that this study will use continuous flow for wastewater treatment. First, determine the most important parameters of the reaction tank in the entire EC procedure, including electrode material, inter electrode distance, electrodes arrangement, etc. Furthermore, in the research process, the initial pH value and the current density were used as experimental variables, and by changing these two most important operating parameters for EC, an optimal operating condition range was made. Experimental results, with an optimum initial pH of 8.5, and operating at 40 A to 45 A for low/medium conductivity wastewater and 45 A to 50 A for high conductivity wastewater. In the end, by synthesizing various influencing factors and reaction phenomena, points that should be paid attention to in operation and common problems are put forward, hoping to be used as a basis for the design and operation of other factories in the future.

    中文摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 1 第二章 文獻回顧 2 2-1金屬表面處理廢水 2 2-2金屬表面廢水處理方法 2 2-2-1化學沉降法 2 2-2-2化學混凝法 3 2-2-3吸附法 4 2-2-4膜分離法 5 2-2-5電化學法 5 2-3電混凝法 6 2-3-1電混凝法基本原理 6 2-3-2 電混凝機制 10 2-3-3 氧化還原機制 11 2-3-4 電浮除機制 12 2-3-5電混凝法影響因子 12 2-4鈍化現象 20 2-5電混凝法應用 23 第三章 研究方法 25 3-1研究方法與流程 25 3-1-1研究設計與步驟 25 3-1-2研究對象廢水水質特性 27 3-1-3評估處理效率 28 3-1-4處理系統 29 3-2處理設備 31 3-2-1電混凝設備 31 3-2-2分析儀器及藥品 36 第四章 結果與討論 37 4-1 實廠廢水之性質 37 4-2處理效率之探討 40 4-2-1 pH的改變與處理成效之關係 41 4-2-2 設定電流的改變與處理成效之關係 49 4-2-3 導電度的高低與設定電流之關係 55 4-2-4 操作電壓對處理效果之影響 57 4-3 操作上常見問題 61 第五章 結論與建議 63 5-1結論 63 5-2建議 64 附錄 66 參考文獻 72

    1. Akarsu, C., Ozay, Y., Dizge, N., Elif Gulsen, H., Ates, H., Gozmen, B., & Turabik, M. (2016). Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology. Water Sci Technol, 74(3), 564-579. https://doi.org/10.2166/wst.2016.168
    2. Al-Qodah, Z., Al-Qudah, Y., & Omar, W. (2019). On the performance of electrocoagulation-assisted biological treatment processes: a review on the state of the art. Environ Sci Pollut Res Int, 26(28), 28689-28713. https://doi.org/10.1007/s11356-019-06053-6
    3. Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., & Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749-756. https://doi.org/10.1016/j.cej.2014.09.035
    4. Bashir, M. J. K., Lim, J. H., Abu Amr, S. S., Wong, L. P., & Sim, Y. L. (2019). Post treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique. Journal of Cleaner Production, 208, 716-727. https://doi.org/10.1016/j.jclepro.2018.10.073
    5. Changmai, M., Das, P. P., Mondal, P., Pasawan, M., Sinha, A., Biswas, P., Sarkar, S., & Purkait, M. K. (2020). Hybrid electrocoagulation–microfiltration technique for treatment of nanofiltration rejected steel industry effluent. International Journal of Environmental Analytical Chemistry, 1-22. https://doi.org/10.1080/03067319.2020.1715381
    6. Changmai, M., Pasawan, M., & Purkait, M. K. (2019). Treatment of oily wastewater from drilling site using electrocoagulation followed by microfiltration. Separation and Purification Technology, 210, 463-472. https://doi.org/10.1016/j.seppur.2018.08.007
    7. Çırak, M. (2018). High-temperature electrocoagulation of colloidal calcareo-argillaceous suspension. Powder Technology, 328, 13-25. https://doi.org/10.1016/j.powtec.2018.01.026
    8. Demirbas, E., & Kobya, M. (2017). Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Safety and Environmental Protection, 105, 79-90. https://doi.org/10.1016/j.psep.2016.10.013
    9. Deveci, E. Ü., Akarsu, C., Gönen, Ç., & Özay, Y. (2019). Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process Biochemistry, 84, 124-133. https://doi.org/10.1016/j.procbio.2019.06.016
    10. Dimoglo, A., Sevim-Elibol, P., Dinç, Ö., Gökmen, K., & Erdoğan, H. (2019). Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse. Journal of Water Process Engineering, 31. https://doi.org/10.1016/j.jwpe.2019.100877
    11. Elazzouzi, M., Haboubi, K., & Elyoubi, M. S. (2017). Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater. Chemical Engineering Research and Design, 117, 614-626. https://doi.org/10.1016/j.cherd.2016.11.011
    12. Garcia-Segura, S., Eiband, M. M. S., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267-299.
    13. Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., & Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21. https://doi.org/10.1016/j.desal.2016.10.011
    14. Khemila, B., Merzouk, B., Chouder, A., Zidelkhir, R., Leclerc, J.-P., & Lapicque, F. (2018). Removal of a textile dye using photovoltaic electrocoagulation. Sustainable Chemistry and Pharmacy, 7, 27-35. https://doi.org/10.1016/j.scp.2017.11.004
    15. Mollah, M. Y., Morkovsky, P., Gomes, J. A., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater, 114(1-3), 199-210. https://doi.org/10.1016/j.jhazmat.2004.08.009
    16. Mollah, M. Y., Pathak, S. R., Patil, P. K., Vayuvegula, M., Agrawal, T. S., Gomes, J. A., Kesmez, M., & Cocke, D. L. (2004). Treatment of orange II azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes. J Hazard Mater, 109(1-3), 165-171. https://doi.org/10.1016/j.jhazmat.2004.03.011
    17. Muller, S., Behrends, T., & van Genuchten, C. M. (2019). Sustaining efficient production of aqueous iron during repeated operation of Fe(0)-electrocoagulation. Water Res, 155, 455-464. https://doi.org/10.1016/j.watres.2018.11.060
    18. Nawarkar, C. J., & Salkar, V. D. (2019). Solar powered Electrocoagulation system for municipal wastewater treatment. Fuel, 237, 222-226. https://doi.org/10.1016/j.fuel.2018.09.140
    19. Reilly, M., Cooley, A. P., Tito, D., Tassou, S. A., & Theodorou, M. K. (2019). Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters. Energy Procedia, 161, 343-351. https://doi.org/https://doi.org/10.1016/j.egypro.2019.02.106
    20. Shahedi, A., Darban, A., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current opinion in electrochemistry, 22, 154-169.
    21. Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., & Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428. https://doi.org/10.1016/j.cej.2021.131161
    22. Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37. https://doi.org/10.1016/j.jwpe.2020.101440
    23. Vepsäläinen, M., & Sillanpää, M. (2020). Electrocoagulation in the treatment of industrial waters and wastewaters. In Advanced Water Treatment (pp. 1-78). https://doi.org/10.1016/b978-0-12-819227-6.00001-2
    24. Verma, A. K. (2017). Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. Journal of Water Process Engineering, 20, 168-172. https://doi.org/10.1016/j.jwpe.2017.11.001
    25. 何承准(2018)。以超聲波程序提升電混凝效能之研究。國立台灣大學環境工程研究所博士論文,台北市。
    26. 李中光(2020)。淺談螯合重金屬廢水之處理。環境工程技師公會會訊,頁 15-49。
    27. 李中光、廖祐誠、李念庭(2018)。電混凝技術在廢水處理中之應用。桃園市大學校院產業環保技術服務團,39,40。
    28. 杜士帽、董四祿(2019)。重金屬廢水處理方法的探討。有色設備(3),頁 8-10。
    29. 杜紫軍(2011)。金屬表面處理業廢水前處理設施最佳流程及標準操作手冊。載於徐正中(主編),。(頁 139)。臺北市:經濟部工業局。
    30. 柯宏杰(2005)。以電解混凝法處理化學機械研磨廢水-影響因子及反應機制。國立交通大學環境工程系所碩士論文,新竹市。
    31. 徐龍乾、劉樹麗、徐曉軍、曹廣祝(2017)。電絮凝法在重金屬廢水處理中鈍化機理的研究進展。現代化工,37(12),頁 33-37。
    32. 張以忱、錢炯、左繼成、吴達(2007)。電絮凝水處理技術陽極優化的研究。工業水處理,27(3),頁 4-6。
    33. 梁宏榛(2011)。以電氧化及電混凝技術進行染料OrangeII去除之研究。中華醫事科技大學生物安全衛生研究所碩士論文,台南市。
    34. 黄雪琪、靖波、陳文娟、尹先清、李賡(2019)。電絮凝過程中倒極消除極板鈍化。環境工程學報,13(11),頁 2661-2667。
    35. 劉金燕、劉立華、薛建榮、吕超強、李童、胡博強(2018)。重金屬廢水吸附處理的研究進展。環境化學,37(9),頁 2016-2024。
    36. 劉雲根、崔亞偉、王海峰(2009)。電凝聚技術在水處理中的研究進展。污染防治技述,22(2),頁 68-73。

    QR CODE
    :::