| 研究生: |
黃子晏 Tzu-Yen Huang |
|---|---|
| 論文名稱: |
考量違約風險下的可轉債評價樹模型 Pricing Convertible Bonds with Default Risk |
| 指導教授: | 吳庭斌 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 可轉換債券 、違約風險 、樹模型 |
| 外文關鍵詞: | Convertible Bond, Default Risk, Tree Model |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對可轉債評價實務上通常使用的樹模型之文獻進行研究,了解各個可轉債評價樹模型的優點、缺點、建構方式以及使用方式,而後提供一個新的可轉債評價樹模型,其中隨機股價二項樹模型使用Cox-Ross-Rubinstein(1979, CRR)模型建構;隨機無風險利率三項樹模型採用Hull-White(1990, HW)單因子模型建構;含違約風險的利率樹模型則根據Jarrow and Turnbull(1995)提出的方法,在無風險利率樹加上違約機率(𝜆𝑡)和恢復率(δ)代表公司債的行為建構而成。不同於Hung and Wang(2002)與Chambers and Lu(2007)中隨機無風險利率二項樹皆使用Black-Derman-Toy(1990, BDT)模型建構,本文採用的Hull-White(1990, HW)單因子模型能夠表現出利率均值回歸的特徵且有負利率的可能性,更適合在實務上應用。本文還考慮股價和無風險利率的相關性,藉由相關係數調整兩者間的聯合機率,並提出一個新的相關係數調整法解決聯合機率可能出現負值的問題並放寬對相關係數的限制範圍。最後,本文提供一個數值例子及兩個實際案例。藉由最後的實際案例搭配市場資料取得與處理以及參數估計的範例,完整演示實務上應用本文評價模型評價可轉換債券的過程及結果,並進行相關係數敏感性及調整法分析。
This article studies the literatures of the tree model for pricing convertible bonds, since convertible bonds are usually priced in practice using tree models. The study includes the advantages, disadvantages, modeling and pricing process of each tree model. Then, this article provides a new tree model for pricing convertible bonds. In this model, the stochastic stock price binomial tree model is modeled using the Cox-Ross-Rubinstein(1979, CRR) model; the stochastic risk-free interest rate trinomial tree model is modeled using the Hull-White single-factor model(1990, HW); and the interest rate tree model with default risk is modeled following the approach in Jarrow and Turnbull(1995), which added default probability(𝜆𝑡) and recovery rate(δ) into the risk-free interest rate tree to represent the behavior of corporate bonds. Unlike Hung and Wang(2002) and Chambers and Lu(2007) both modeled the stochastic risk-free interest rate binomial tree using the Black-Derman-Toy(1990, BDT) model, the Hull-White single-factor model(1990, HW) can express the characteristic of mean reversion and negative interest rate, which is more suitable for practical application. This article considers the correlation between the stock price and the risk-free interest rate, and proposes a new adjustment method to solve the problem of the negative joint probability and relax the limit on the correlation coefficient. Finally, this article provides a numerical example and two practical examples. The last practical example in concert with examples of obtaining and processing market data, and estimate parameter to demonstrate the process and results of using this article's pricing model in practice. Additionally, it analyzes sensitivity and adjustment method of correlation coefficient.
一、中文部分
中華信用評等(2021)。中華信評信用評等等級定義。
公開資訊觀測站(2018年)。上市公司信用評等專區。查詢日期:2023年04月19日。檢自:https://mops.twse.com.tw/mops/web/t191sb01
公開資訊觀測站(2018年)。新光金 之轉(交)換公司債發行資料。查詢日期:2023年04月19日。檢自:https://mops.twse.com.tw/mops/web/t120sg01?TYPEK=&bond_id=28886&bond_kind=5&bond_subn=%24M00000001&bond_yrn=5&come=2&encodeURIComponent=1&firstin=ture&issuer_stock_code=2888&monyr_reg=202303&pg=&step=0&tg=
台灣期貨交易所(2023年03月)。選擇權每日交易行情下載。查詢日期:2023年04月19日。檢自:https://www.taifex.com.tw/cht/3/dlOptDailyMarketView
台灣證券交易所(2017年12月~2018年12月)。個股日成交資訊。查詢日期:2023年04月19日。檢自:https://www.twse.com.tw/zh/trading/historical/stock-day.html
台灣證券交易所(2023年03月)。個股日成交資訊。查詢日期:2023年04月19日。檢自:https://www.twse.com.tw/zh/trading/historical/stock-day.html
行政院金融監督管理委員會證券期貨局(2009)。證券商自有資本與風險約當金額之計算方式(進階計算法)。行政院公報,第015卷,第115期,20090618,財政經濟篇。
江良、林鸿熙(2016)。随机波动率Hull-White模型参数估计方法。系统工程学报,31(5),633-642。
李岳霖(2017)。轉換公司債健全管理措施。證券暨期貨月刊,第三十五卷,第十二期。
張傳章(2011)。 期貨與選擇權。雙葉書廊。
穆迪年度違約和回收率報告(2020年)。查詢日期:2023年04月19日。檢自:https://m.sohu.com/a/508544589_121123798?_trans_=010004_pcwzy
證券櫃檯買賣中心(2005年10月31日)。上櫃轉換公司債公告作業問與答。查詢日期:2023年3月30日。檢自: https://www.tpex.org.tw/storage/bond_download/%E8%BD%89%E6%8F%9B%E5%85%AC%E5%8F%B8%E5%82%B5/%E8%BD%89%E5%82%B5%E5%95%8F%E8%88%87%E7%AD%94.doc
證券櫃檯買賣中心(2018年12月)。公司債參考利率。查詢日期:2023年04月19日。檢自:https://www.tpex.org.tw/web/bond/tradeinfo/govbond/GovBondDaily_02.php?l=zh-tw
證券櫃檯買賣中心(2018年12月)。公債殖利率曲線。查詢日期:2023年04月19日。檢自:https://www.tpex.org.tw/web/bond/tradeinfo/govbond/GovBondDaily_02.php?l=zh-tw
證券櫃檯買賣中心(2023年02月)。轉(交)換債年統計報表。查詢日期:2023年3月20日。檢自:https://www.tpex.org.tw/web/bond/tradeinfo/cb/CBYearly.php?l=zh-tw
證券櫃檯買賣中心(2023年02月02日)。轉換公司債行使贖回權公告。查詢日期:2023年3月30日。檢自:https://www.tpex.org.tw/web/bond/bulletin/t108sb08-1.php?l=zh-tw
證券櫃檯買賣中心(2017年12月~2018年12月)。公債殖利率曲線。查詢日期:2023年04月19日。檢自:https://www.tpex.org.tw/web/bond/tradeinfo/govbond/GovBondDaily_02.php?l=zh-tw
證券櫃檯買賣中心(2023年03月)。公債殖利率曲線。查詢日期:2023年04月19日。檢自:https://www.tpex.org.tw/web/bond/tradeinfo/govbond/GovBondDaily_02.php?l=zh-tw
二、西文部分
Aktuarvereinigung, D. (2015). Ergebnisbericht des Ausschusses Investment: Zwischenbericht zur Kalibrierung und Validierung spezieller ESG unter Solvency II.
Batten, J. A., Khaw, K. L. H., & Young, M. R. (2014). Convertible bond pricing models. Journal of Economic Surveys, 28(5), 775-803.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
Black, F., Derman, E., & Toy, W. (1990). A one-factor model of interest rates and its application to treasury bond options. Financial Analysts Journal, 46(1), 33-39.
Brennan, M. J., & Schwartz, E. S. (1977). Convertible bonds: Valuation and optimal strategies for call and conversion. The Journal of Finance, 32(5), 1699-1715.
Brennan, M. J., & Schwartz, E. S. (1980). Analyzing convertible bonds. Journal of Financial and Quantitative Analysis, 15(4), 907-929.
Busch, R. S. (2022). Hybrid financing instruments: analyzing investors’ reactions to the issuance of convertible bonds (Doctoral dissertation).
Calamos, J. P. (1998). Convertible securities. McGraw-Hill Professional Publishing.
Chambers, D. R., & Lu, Q. (2007). A tree model for pricing convertible bonds with equity, interest rate, and default risk. Journal of Derivatives, 14(4), 25.
Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (1985). A Theory of the Term Structure of Interest Rates. Econometrica, 53(2), 385-407.
Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229-263.
Das, S. R., & Sundaram, R. K. (2004). A simple model for pricing securities with equity, interest-rate, and default risk.
Ho, T. S., & Lee, S. B. (1986). Term structure movements and pricing interest rate contingent claims. The Journal of Finance, 41(5), 1011-1029.
Hull, J. C. (2003). Options futures and other derivatives. Pearson Education India.
Hull, J. C. (2015). Options, Futures, and Other Derivatives. 9th Edition, Global Edition. Pearson Education.
Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4), 573-592.
Hull, J., & White, A. (1994). Numerical procedures for implementing term structure models I: Single-factor models. Journal of Derivatives, 2(1), 7-16.
Hung, M. W., & Wang, J. Y. (2002). Pricing convertible bonds subject to default risk. The Journal of Derivatives, 10(2), 75-87.
Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. The Journal of Finance, 50(1), 53-85.
Kao, D. L. (2000). Estimating and pricing credit risk: An overview. Financial Analysts Journal, 56(4), 50-66.
Lvov, D., Yigitbasioglu, A. B., & El Bachir, N. (2004, December). Pricing convertible bonds by simulation. In Second IASTED International Conference (pp. 259-264).
McConnell, J. J., & Schwartz, E. S. (1986). LYON taming. The Journal of Finance, 41(3), 561-576.
Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 141-183.
Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 473-489.
Tsiveriotis, K., & Fernandes, C. (1998). Valuing convertible bonds with credit risk. The Journal of Fixed Income, 8(2), 95.
Wang, J. Y., & Dai, T. S. (2017). A modified reduced-form model with time-varying default and recovery rates and its applications in pricing convertible bonds. Journal of Derivatives, 24(4), 52.
Wilde, C., & Kind, A. H. (2005). Pricing convertible bonds with Monte Carlo simulation. Available at SSRN 676507.
Xu, R., & Li, S. (2009, July). A tree model for pricing convertible bonds with equity, market and default risk. In 2009 International Conference on Business Intelligence and Financial Engineering (pp. 673-677). IEEE.