跳到主要內容

簡易檢索 / 詳目顯示

研究生: 歐司瓦
Oswald R. Sitanggang
論文名稱: 應用多時域雷達干涉技術於於台灣屏東平原沿海區域測量抽水引致地層下陷
Implementation of Multi-Temporal InSAR to assess pumping induced land subsidence near the coastal line of Pingtung Plain, Taiwan
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 63
中文關鍵詞: 地層下陷多時相InSAR地下水
外文關鍵詞: Land subsidence, Multi-temporal InSAR, Groundwater
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於台灣西南部的農業與養殖漁業而言,屏東平原的地下水資源極為重要。由於對於地下水資源的過度依賴,長期超抽地下水被認為是沿海低海拔地區地面沉降的主要原因。傳統地層下陷測量依靠GPS和水準測量數據為主,但是這些技術耗時費力、價格昂貴且測量點有限。為了減輕地層下陷所造成的災害,本研究結合多時域InSAR技術、連續散射體和小基線InSAR技術以監測地下水抽取引起的地面沉陷。本研究中將利用StaMPS / MTI(Stanford Method for Persistent Scatterer / Multi-temporal),結合25張由2004年至2009年的ENVISAT ASAR衛星圖像與NASA SRTM所測得的20公尺數值高程模型(DEM)以消除地形造成的效應。研究結果顯示相對於2004-2010年的平均沉陷數據-21至-28公分/年,多時域InSAR測量的沉陷速率為-20至-29公分/年。 MT-InSAR與水準測量數據之間的相關性為R2值0.69,結合PS-InSAR和SB-InSAR將可獲得更佳的地表變形監測結果。


    Pingtung Plain is imperative groundwater assets territories in southwestern Taiwan due to the creating of farming and aquaculture. The utilizations of groundwater have expanded essentially. Long-term over-extraction of groundwater are suspected to play a dominant role in land subsidence where the elevation along the coastal area is lower than seawater level. Traditional measurements of land subsidence rely on GPS and leveling data. However, those techniques are time-consuming, high-priced and limitation on geodetic points. In terms of natural hazard mitigation, this study uses Multi-temporal InSAR combining Persistent Scatterer and Small Baseline InSAR techniques to monitor land subsidence due to groundwater pumping. 25 ENVISAT ASAR images satellite were acquired from 2004-2009, to obtain the surface deformation by utilizing StaMPS/MTI (Stanford Method for Persistent Scatterer/Multi-temporal) program and utilizes the 20 meter of Digital Elevation Model (DEM) from NASA’S Shuttle Radar Topography Mission (SRTM) to completely remove the topographic issue. The subsidence rate measured with multi-temporal InSAR is -20 mm/years to -29 mm/year corresponds to leveling data is from 2004-2010 is -21 mm/years to -28 mm/years. Correlation between MT-InSAR and leveling data shows a higher correlation with R-squared value is 0.69. Combining PS-InSAR and SB-InSAR can optimize the detection of surface deformation.

    List of Contents 摘要 i Abstract ii Acknowledgments iii List of Contents iv List of Figure vi Chapter 1. Introduction 1 1.1. Background and Motivation for the study 1 1.2. Objective 4 Chapter 2. Literature Review 5 2.1. Land subsidence due to groundwater pumping 5 2.2. Interferometry synthetic aperture radar 7 2.2.1. InSAR Decorrelation problem 8 Chapter 3. Methodology 10 3.1 Description of study area 10 3.2. Data source 12 3.1.1. ENVISAT ASAR satellite 12 3.1.2. Leveling Data 13 3.1.3. Groundwater level data 14 3.3. Methodology 15 3.3.1. Multi-Temporal InSAR 15 Chapter 4. Results & Discussion 18 4.1. Multi-temporal InSAR 18 4.2. Comparison Multi-temporal InSAR with leveling data 21 4.3. Groundwater Observation 35 Chapter 5. Conclusion & Suggestions 36 Reference 37 Appendix 41 StaMPS/MTI parameters 44 PS Processing 44 Small Baseline Processing 50

    Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753.
    Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169-209. doi:10.1146/annurev.earth.28.1.169
    Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. doi:10.1109/TGRS.2002.803792
    Chang, C., Chang, T., Wang, C., Kuo, C., & Chen, K. (2004). Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan. Mathematics and Computers in Simulation, 67(4), 351-359.
    Chaussard, E., Amelung, F., Abidin, H., & Hong, S.-H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150-161. doi:http://dx.doi.org/10.1016/j.rse.2012.10.015
    Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2003). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68(1), 3-14. doi:https://doi.org/10.1016/S0013-7952(02)00195-3
    Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. doi:10.1109/36.898661
    Galloway, D. L., & Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486. doi:10.1007/s10040-011-0775-5
    Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573-2585. doi:10.1029/98WR01285
    Gambolati, G., Teatini, P., & Ferronato, M. (2005). Anthropogenic land subsidence. Encyclopedia of Hydrological Sciences.
    Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), n/a-n/a. doi:10.1029/2008GL034654
    Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1-13. doi:http://dx.doi.org/10.1016/j.tecto.2011.10.013
    Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7), n/a-n/a. doi:10.1029/2006JB004763
    Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), n/a-n/a. doi:10.1029/2004GL021737
    Hou, C.-S., Hu, J.-C., Shen, L.-C., Wang, J.-S., Chen, C.-L., Lai, T.-C., . . . Angelier, J. (2005). Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geoscience, 337(13), 1184-1193. doi:http://dx.doi.org/10.1016/j.crte.2005.05.012
    Hsieh, C.-S., Shih, T.-Y., Hu, J.-C., Tung, H., Huang, M.-H., & Angelier, J. (2011). Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan. Natural Hazards, 58(3), 1311-1332. doi:10.1007/s11069-011-9734-7
    Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15(5), 903-913. doi:10.1007/s10040-006-0137-x
    Hu, J.-C., Chu, H.-T., Hou, C.-S., Lai, T.-H., Chen, R.-F., & Nien, P.-F. (2006). The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements. Quaternary International, 147(1), 62-69.
    Lu, C.-H., Ni, C.-F., Chang, C.-P., Chen, Y.-A., & Yen, J.-Y. (2016). Geostatistical Data Fusion of Multiple Type Observations to Improve Land Subsidence Monitoring Resolution in the Choushui River Fluvial Plain, Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(4).
    Lubis, A. M., Sato, T., Tomiyama, N., Isezaki, N., & Yamanokuchi, T. (2011). Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. Journal of Asian Earth Sciences, 40(5), 1079-1088. doi:https://doi.org/10.1016/j.jseaes.2010.12.001
    Massonnet, D., Feigl, K., Rossi, M., & Adragna, F. (1994). Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature, 369(6477), 227-230.
    Ng, A. H.-M., Ge, L., Li, X., Abidin, H. Z., Andreas, H., & Zhang, K. (2012). Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. International Journal of Applied Earth Observation and Geoinformation, 18, 232-242. doi:http://dx.doi.org/10.1016/j.jag.2012.01.018
    Phien-wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in Bangkok, Thailand. Engineering Geology, 82(4), 187-201. doi:https://doi.org/10.1016/j.enggeo.2005.10.004
    Richard, B., & Philipp, H. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14(4), R1.
    Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135. doi:https://doi.org/10.1016/j.tecto.2012.08.009
    Tu, Y.S., Tsai, H.T & Ting, C.S. (2009). The evaluation of groundwater environmental restoration by artificial recharge in Pingtung Plain, Taiwan. IAHS Publ 330, 1-8

    QR CODE
    :::