| 研究生: |
陳家琦 Chia-CHI Chen |
|---|---|
| 論文名稱: |
奈米壓印技術製作全介電幾何相位超穎表面 Nanoimprint technology for manufacture all-dielectric geometric phase metasurface |
| 指導教授: |
王智明
Chih Ming Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 幾何相位 、超穎透鏡 、超穎表面 、奈米壓印 |
| 外文關鍵詞: | PB-phase, metalens, metasurface, nanoimprint |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計了一個結合非球面透與炫耀光柵的離軸聚焦超穎透鏡,將奈米壓印技術與超穎表面做結合,利用奈米壓印技術的便利性以及大面積製作等優點,成功的利用PDMS轉印矽基板上超穎表面至玻璃基板上的PI結構層,並探討其轉印過程中的損耗,本論文探討了壓印後超穎表面之奈米壓印片其光學性質,得到超穎表面之奈米壓印片的焦距:4.17 cm 、放大率:0.38 、Strehl ratio為0.34以及線偏振光合圓偏振光所對應到的最大繞射效率分別為0.0145% 和 0.0115%,低效率主要歸因於圖案轉移過程中矩形納米結構的圓化和相對較薄的厚度。我們發現我們所製作出來的樣品有著完整的成像能力以及部份的偏振轉換率。
In this paper, an off-axis focusing metalens that combines aspheric transparent and dazzling gratings is designed, and the nanoimprint technology is combined with the metasurface. Taking advantage of the convenience of nanoimprint technology and the advantages of large-area fabrication, the successful The use of PDMS to transfer the metasurface on the silicon substrate to the PI structure layer on the glass substrate, and discuss the loss during the transfer process. This paper discusses the optical properties of the nanoimprinted metasurface after imprinting, The focal length: 4.17 cm, magnification: 0.38, Strehl ratio of 0.34, and the maximum diffraction efficiency corresponding to linearly polarized light and circularly polarized light are 0.0145% and 0.0115%, respectively. The low efficiency is mainly attributed to the rounding and relatively thin thickness of the rectangular nanostructures during pattern transfer. We found that the samples we produced had full imaging capability and partial polarization conversion.
[1] R. l. Chern et al., "surface and bulk modes for periodic structures of negative index materials," Physical Review B, vol.74, p.155101(2006)
[2] J. B. Pendry et al., "Magnetism from conductors and enchanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, vol.47,pp.2075-2084(1999)
[3] S. Larouche et al., "Infrared metamaterial phase holograms", Nature Materials, vol 11, pages450–454 (2012)
[4] W. T. Chen et al., "High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images", Nano Letters, vol. 14, no. 1, pp. 225-230. (2014)
[5] M. Khorasaninejad, et al., "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194 (2016)
[6] K. L. Kelly et al., "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668-677. (2003)
[7] D. Chanda et al., "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nature Nanotechnology, vol. 6, no. 7, pp. 402-407. (2011)
[8] N. I. Zheludev et al., "Lasing spaser," Nature Photonics, vol. 2, no. 6, pp. 351-354. (2008)
[9] S. L. Sun et al., "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229. (2012)
[10] H. H. Hsiao, et al., "Fundamentals and Applications of Metasurfaces," Small Methods, vol. 1, no. 4, Art. no. 1600064. (2017)
[11] X. Q. Zhang et al., "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities," Advanced Materials, vol. 25, no. 33, pp. 4567-4572. (2013)
[12] B. H. Chen et al., "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light," Nano Letters, vol. 17, no. 10, pp. 6345-6352. (2017)
[13] Y. Xin. Guo , "微影製程再進化!複雜電路的祕密,"科技大觀園,.(2011)
[14] H. Tan et al., “Roller nanoimprint lithography”, American Vacuum Society, vol. 16, No. 1, pp.3926-3928. (1998)
[15] S. Y. Chou et al., "Nanoimprint lithography. ", Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 14: 4129–4133(1996)
[16] M. D. Austin, et al., "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography". Applied Physics Letters, 84 (26): 5299–5301(2004)
[17] P. K. Wei et al., "The Application of Nanoimprint Technology for Surface Plasmon Biosensing Arrays", 生醫光電特刊,第一一二期,(2010)
[18] G. Y. Lee et al., "Metasurface eyepiece for augmented reality," Nature Communications, 9,4562(2018)
[19] N. Yu. et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction", Science 334, 333-337 (2011).
[20] J. W. Goodman, "Introduction to Fourier Optics", 2nd ED.
[21] R. C. Jones, J. Opt. Soc. Am. 31, 488; 31, 500. (1941)
[22] Z. Bomzon et al., "Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength grating", Optics Letters, Vol. 27, Issue 13, pp. 1141-1143, (2002)
[23] S. Y. Chou, et al., "Sub-10 71 nm imprint lithography and applications," Journal of Vacuum Science and Technology B, vol. 15, No. 6, pp. 2897-2904(1997)
[24] T. Bailey, et al., "Step and flash imprint lithography: Temple surface treatment and detect analysis", Computer Science Journal of Vacuum Science & Technology B (2001)
[25] Y. Xia, et al., "Soft lithography", Annual Review of Materials Science, vol. 28:153-184(1998)
[26] Y. Stephen et al., "Ultrafast and direct imprint of nanostructures in silicon", Nature, vol. 417(20), pp.835-837, (2002)