跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃菘志
Song-Zhi Huang
論文名稱: 塑膠基板非晶矽太陽能電池特性之改善
Characteristic improvements of amorphous silicon solar-cell on plastic substrate
指導教授: 洪志旺
Jyh-Wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 46
中文關鍵詞: 非晶矽太陽能電池
外文關鍵詞: amorphous silicon solar
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    在本論文中,為獲得光電特性良好的透明前電極,首先探討沉積於玻璃及PET(polyester)基板上的ITO(indium-tin-oxide)透明電極薄膜製程,得到穿透度及導電性較佳透明電極薄膜當作太陽電池的前電極。接著利用氧及氮氣電漿處理聚亞醯胺 (polyimide,PI)基板表面,去除汙垢及修改表面特性,獲得較佳PI的接觸表面而後於經電漿處理過PI之上沉積鋁-矽-銅(Al/Si/Cu)充當太陽能電池的背電極。鋁-矽-銅薄膜有很好的反射性可增加太陽能電池的光吸收。在PI及PET基板上所製作出p-i-n非晶矽太陽能電池分別其轉換效率僅1.37×10-2 %和2.4×10-3 %。


    Abstract
    In this thesis, in order to obtain the transparent front electrode having good light transmittance and low resistivity, the process conditions for depositing ITO (indium tin oxide) on glass and PET(polyester)substrates were studied firstly. Then the N2- and O2-plasna were used to treat the surface of PI (polyimide) substrate to remove loosely bond surface contaminations and to provide intimate contact between the interacting materials on a molecular scale. The highly reflective aluminum Al (Al/Si/Cu) film deposited on plasma-treated PI substrate was used as back electrode and would increase the light-trapping. The conversion efficiencies of fabricated a-Si:H-based solar cells on PI and PET substrates were only 1.37×10-2 % and 2.4×10-3 % , respectively.

    Contents Abstract (Chinese)...................................ⅰ Abstract.............................................ⅱ Acknowledgement......................................ⅲ Contents.............................................ⅳ Table Captions.......................................ⅵ Figure Captions......................................ⅶ CHAPTER 1 INTRODUCTION...............................1 CHAPTER 2 DEVICE OPERATION PRINCIPLES ...........................................3 2.1 Basic principles of solar cell [8] ...............3 2.2 Fundamental parameters of solar cell [10]........5 2.3 Ohmic Resistance in Real Solar Cells[6]..........11 CHAPTER 3 DEVICE FABRICATION AND MEASUREMENT TECHNIQUES.............................13 3.1 Preparations of Various Amorphous Films.........13 3.1.1 Deposition System[11].........................13 3.1.2 Deposition of a-Si:H Films[12]................15 3.2 Sputtering system[13]...........................17 3.2.1 Plastic substrate.............................17 3.2.2 Deposition of ITO Films.......................18 3.2.3 Deposition of Al/Si/Cu .......................19 3.3 Thermal evaporation system......................23 3.4 Device Synopsis .................................23 3.5 Measurement Technique...........................24 3.5.1 Optical-gap of Amorphous Film [15]............24 3.5.2 Dark and Photo I-V Measurements...............25 CHAPTER4 RESULTS AND DISCUSSION.....................27 4.1 Properties of ITO Films[17].....................27 4.1.1 Optical properties............................27 4.1.2 Electrical properties.........................29 4.2 Properties of Al/Si/Cu Films on Plasma-treated polyimide (PI)......................................32 4.3 Device on O2-plasma treatment...................40 CHAPTER 5 CONCLUSION................................43 FUTURE WORK.........................................44 REFERENCES..........................................45

    REFERENCES
    [1] D. E. Carlson, U. S. Patent No. 4,064,521 (1977).
    [2] J. J. Hanak, “Stacked solar cells of amorphous silicon,” J. Non-Cryst. Solids ,vol . 35, p. 755, 1980.
    [3] D. staebler ,C. Wronski, Appl Phys. Lett.31,292(1977)
    [4] F. Smole, M. Topic, and J. Furlan, “Correlation between TCO/p and p/I heterojunction and effect of n/TCO heterojunction on a-Si:H solar cell performance, ”IEEE Photovoltaic Specialists Conference, vol. 1, p. 491, 1994.
    [5] F. S. Sinencio and R. Williams, “Barrier at the interface between amorphous silicon and transparent conducting oxides and its influence on solar cell performance,” J. Appl. Phys. , vol. 54, p. 2757, 1984.
    [6]A. Goetzberger, J. Knobloch and B. Voss, Crystalline Silcon solar cells,John Wiley & Sons, Inc., Chap 5, p.79, 1988.
    [7]M. Nitschke, G. Schmack, A. Janke, F.Simon, D.Pleul, C.Werner (2002) Low pressure plasma treatment of poly(3-hydroxybutyrate) – toward tailored surfaces for tissue engineering scaffolds. J Biomed Mater Res 59:632–638
    [8] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell’s performance,” M. S. Thesis, CYCU, Taiwan, R.O.C.,2005
    [9]M.Green, Solar Cells: Operating Principles, Technology, and System Applications, Chap. 1, Prentice Hall, Englewood Cliffs, NJ, 1–12 (1982).
    [10] 黃惠良,曾百亨“太陽能電池:第二章太陽能電池原理,"五南圖書,(2008).
    [11] R. Chittick,J. Alexander, H. Sterling, J. Electrochem. Soc. 116, 77–81 (. (1969).
    [12] W. Spear, P. LeComber, J. Non-Cryst. Solids 8–10, 727–738 (1972).
    [13] Ohring, Sputter Deposition Techniques, Chapter 3, section 7
    [14] J. Bailat, V. Terrazzoni-Daudrix , J. Guille t, F. Freita1, X. Niquille1, A. Shah1, C. Ballif1, T. Scharf1,Rencent development of solar cells on low-cost plastic substrate.
    [15] T. R. Yu, “Design and fabrication of a-C:H and a-SiN:H alternating-current white thin-film light-emitting diodes,” M. S. Thesis, NCU, Taiwan, R.O.C.,2006.
    [16] J. Tauc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
    [17] Y. Y. Wang, Q. F. Wei*, D. F. Shao, Y. B. Cai and L. Y. Yu, Optoelectrical properties of PET spunbonded nonwovens deposited with ITO thin films by RF sputter coating
    [18] M. Nitschke, “Polymer Surfaces and Interfaces :Plasma Modification of Polymer Surfaces and Plasma Polymerization” (2008)
    [19] E.M.Liston, L.Martinu and M.R.Wertheimer, plasma surface moderation of polymers: Plasma surface modification of polymer for improved adhesion: a critical review (1993), p4.
    [20] K.Yamamoto *, A. Nakajima, M. Yoshimi, T. Sawada,S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi,M.Goto, T. Meguro, T. Matsuda,M. Kondo, T. Sasaki, Y. Tawada ,A high efficiency thin film silicon solar cell and module,Solar Energy Vol77, pp.939-949,(2004)

    QR CODE
    :::