| 研究生: |
陳耀恩 Yao-En Chen |
|---|---|
| 論文名稱: |
結合未來自我與專家外衣之AI學習教練系統設計與實證研究 Design and Empirical Study of an AI Learning Coach System Integrating Future Self and Mantle of the Expert |
| 指導教授: |
莊永裕
Yung-Yu Zhuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 軟體工程研究所 Graduate Institute of Software Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | AI學習教練 、未來自我 、專家外衣 、恆毅力 、成長型思維 、時間管理 、個人化學習 |
| 外文關鍵詞: | AI learning coach, future self, mantle of the expert, grit, growth mindset, time management, personalized learning |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在AI與教育深度融合的趨勢下,現行學習管理系統(LMS)多著重於知識面的學習支持,卻普遍忽略學生在情意層面,如時間管理、學習動機與面對挫折的支持需求。為回應此挑戰,本研究設計並實作一套結合「未來自我」與「專家外衣」理論之AI數位學習教練系統。該系統整合劇本式提示設計、提示工程技術與檢索增強生成(Retrieval-Augmented Generation, RAG)機制,提供具備情境脈絡與長期學習歷程的個人化教練回饋,以強化學生的學習投入與自我調節能力。
本研究採準實驗設計,招募101位大學生修習日式餐旅實務課程,並隨機分為實驗組與對照組。兩組皆使用相同LMS平台進行學習,惟實驗組額外使用本研究設計之AI學習教練模組。透過前後測評量、問卷與系統紀錄分析,研究結果顯示:實驗組學生在學習成效、時間管理、恆毅力與成長型思維等情意面向均顯著優於對照組,並展現出更高的參與度與持續性。
本研究提出之「雙重身份共振模型」,結合「現在的專業角色」與「未來的專業自我」的雙重激勵,透過AI教練角色設計實踐於LMS中,不僅提升學生的學習動機與管理能力,更提供教育現場一套可行且具擴充性的AI輔助教學解方,具有理論創新與實務應用之價值。
With the deep integration of artificial intelligence (AI) and education, current learning management systems (LMS) primarily focus on supporting cognitive learning but often overlook students’ affective needs, such as time management, learning motivation, and coping with setbacks. To address this gap, this study designs and implements an AI-based digital learning coach system that integrates the theories of Future Self and Mantle of the Expert (MoE). The system incorporates script-based prompt design, prompt engineering techniques, and a Retrieval-Augmented Generation (RAG) mechanism to provide personalized coaching feedback embedded within contextual and longitudinal learning trajectories, thereby enhancing students’ learning engagement and self-regulation skills.
A quasi-experimental design was adopted, involving 101 undergraduate students enrolled in a Japanese hospitality practice course, who were randomly assigned to either the experimental or control group. Both groups used the same LMS platform; however, the experimental group had access to the AI learning coach module developed in this study. Data were collected through pre- and post-tests, questionnaires, and system log analysis. The results indicate that students in the experimental group significantly outperformed those in the control group in learning outcomes, time management, grit, and growth mindset, while also demonstrating higher levels of engagement and persistence.
This study proposes the Dual Identity Resonance Model (DIRM), which combines the motivation derived from students’ “current professional roles” and their “future professional selves.” By embedding this dual-identity framework into the LMS via the AI coach design, the system not only enhances students’ learning motivation and self-management abilities but also provides a scalable and practical AI-assisted teaching solution. The findings contribute both theoretical innovation and practical implications for the integration of AI into education.
陳致諺(2024)。基於知識管理之 AI 個人化學習管家以提升學生學習管理能力(碩士論文)。國立中央大學資訊工程學系。
黃招憲、郭德信、王淑麗(2005)。 餐旅日語(上)。 致良出版社。
Alay, S., & Kocak, S. (2002). Validity and reliability of time management questionnaire. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 22(22).
Atmojo, A. E. P., & Nugroho, A. (2020). EFL classes must go online! Teaching activities and challenges during COVID-19 pandemic in Indonesia. Register Journal, 13(1), 49-76.
Belda-Medina, J., & Calvo-Ferrer, J. R. (2022). Using chatbots as AI conversational partners in language learning. Applied Sciences, 12(17), 8427.
Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The internet and higher education, 27, 1-13.
Cheng, S. L., & Xie, K. (2021). Why college students procrastinate in online courses: A self-regulated learning perspective. The Internet and Higher Education, 50, 100807.
Dweck, C. S. (2006). Mindset: The new psychology of success. Random house.
Dweck, C. S., Chiu, C. Y., & Hong, Y. Y. (1995). Implicit theories and their role in judgments and reactions: A word from two perspectives. Psychological inquiry, 6(4), 267-285.
Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological review, 95(2), 256.
Duckworth, A. L., & Eskreis-Winkler, L. (2015). Grit. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition (pp. 397-401). Elsevier Inc.
Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: perseverance and passion for long-term goals. Journal of personality and social psychology, 92(6), 1087.
Duckworth, A. L., & Quinn, P. D. (2009). Development and validation of the Short Grit Scale (GRIT–S). Journal of personality assessment, 91(2), 166-174.
Fırat, M. (2023). Integrating AI applications into learning management systems to enhance e-learning. Instructional Technology and Lifelong Learning, 4(1), 1-14.
Følstad, A., & Brandtzæg, P. B. (2017). Chatbots and the new world of HCI. interactions, 24(4), 38-42.
Gollwitzer, P. M. (1999). Implementation intentions: strong effects of simple plans. American psychologist, 54(7), 493.
Heathcote, D., & Bolton, G. (1994). Drama for Learning: Dorothy Heathcote's Mantle of the Expert Approach to Education. Dimensions of Drama Series. Heinemann, 361 Hanover St., Portsmouth, NH 03801-3912.
Hershfield, H. E., Goldstein, D. G., Sharpe, W. F., Fox, J., Yeykelis, L., Carstensen, L. L., & Bailenson, J. N. (2011). Increasing saving behavior through age-progressed renderings of the future self. Journal of marketing research, 48(SPL), S23-S37.
Hershfield, H. E., Wimmer, G. E., & Knutson, B. (2009). Saving for the future self: Neural measures of future self-continuity predict temporal discounting. Social cognitive and affective neuroscience, 4(1), 85-92.
Jhala, A. (2008). Exploiting Structure and Conventions of Movie Scripts for Information Retrieval and Text Mining. Lecture Notes in Computer Science, 210-213. https://doi.org/10.1007/978-3-540-89454-4
Knoth, N., Tolzin, A., Janson, A., & Leimeister, J. M. (2024). AI literacy and its implications for prompt engineering strategies. Computers and Education: Artificial Intelligence, 6, 100225.
Lee, D., & Palmer, E. (2025). Prompt engineering in higher education: a systematic review to help inform curricula. International Journal of Educational Technology in Higher Education, 22(1), 7.
Lee, Y. F., Hwang, G. J., & Chen, P. Y. (2025). Technology-based interactive guidance to promote learning performance and self-regulation: a chatbot-assisted self-regulated learning approach. Educational technology research and development, 1-26.
Li, Z., Wang, Z., Wang, W., Hung, K., Xie, H., & Wang, F. L. (2025). Retrieval-augmented generation for educational application: A systematic survey. Computers and Education: Artificial Intelligence, 100417.
Liang, C., Xu, C., Cheng, J., Min, W., & Lu, H. (2012). Script-to-movie: a computational framework for story movie composition. IEEE transactions on multimedia, 15(2), 401-414.
McGill, T. J., & Klobas, J. E. (2009). A task–technology fit view of learning management system impact. Computers & Education, 52(2), 496-508.
Oyserman, D., Bybee, D., & Terry, K. (2006). Possible selves and academic outcomes: How and when possible selves impel action. Journal of personality and social psychology, 91(1), 188.
Oyserman, D., & Destin, M. (2010). Identity-based motivation: Implications for intervention. The Counseling Psychologist, 38(7), 1001-1043.
Oyserman, D. (2015). Identity-based motivation. Emerging trends in the social and behavioral sciences, 38, 1-11.
Pataranutaporn, P., Winson, K., Yin, P., Lapapirojn, A., Ouppaphan, P., Lertsutthiwong, M., ... & Hershfield, H. E. (2024, October). Future you: a conversation with an AI-generated future self reduces anxiety, negative emotions, and increases future self-continuity. In 2024 IEEE Frontiers in Education Conference (FIE) (pp. 1-10). IEEE.
Li, W., & Hashim, S. B. (2025). Serial mediating role of future time perspective and grit in the relationship between growth mindset and academic engagement. Scientific Reports, 15(1), 24189.
Ortega-Ochoa, E., Pérez, J. Q., Arguedas, M., Daradoumis, T., & Puig, J. M. M. (2024). The effectiveness of empathic chatbot feedback for developing computer competencies, motivation, self-regulation, and metacognitive reasoning in online higher education. Internet of Things, 25, 101101.
Sefriani, R., Nastasia, K., Sepriana, R., & Candra, Y. (2022). Time management and procrastination during the COVID-19 pandemic in higher education. Journal of Education and Learning (EduLearn), 16(4), 458-463.
Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized learning terms. Smart learning environments, 7(1), 33.
Snekha, S., & Ayyanathan, N. (2023). An Educational CRM Chatbot for Learning Management System. Shanlax International Journal of Education, 11(4), 58-62.
Swacha, J., & Gracel, M. (2025). Retrieval-Augmented Generation (RAG) Chatbots for Education: A Survey of Applications. Applied Sciences, 15(8), 4234.
Tan, T. K., & Samavedham, L. (2022). The learning process matter: A sequence analysis perspective of examining procrastination using learning management system. Computers and Education Open, 3, 100112.
Topsakal, O., & Akinci, T. C. (2023, July). Creating large language model applications utilizing langchain: A primer on developing llm apps fast. In International conference on applied engineering and natural sciences (Vol. 1, No. 1, pp. 1050-1056).
Thway, M., Recatala-Gomez, J., Lim, F. S., Hippalgaonkar, K., & Ng, L. W. (2024). Battling Botpoop using GenAI for higher education: A study of a retrieval augmented generation chatbots impact on learning. arXiv preprint arXiv:2406.07796.
Vasarhelyi, M. A., Moffitt, K. C., Stewart, T., & Sunderland, D. (2023). Large language models: An emerging technology in accounting. Journal of emerging technologies in accounting, 20(2), 1-10.
Wei, D., Ouyang, Y., & Zeng, X. (2025). Future Self-Continuity and Grit in College Students: The Role of Future Time Perspective. Behavioral Sciences, 15(2), 144.
Wolters, C. A., & Brady, A. C. (2021). College students’ time management: A self-regulated learning perspective. Educational Psychology Review, 33(4), 1319-1351.
Won, S., Wolters, C. A., Brady, A. C., & Hensley, L. C. (2025). Grit and self-regulated learning: evaluating achievement goals as mediators. Social Psychology of Education, 28(1), 57.
Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q. L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136.
Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal of educational psychology, 81(3), 329.