跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林祺紘
Chi-Hong Lin
論文名稱: 合併星系下超大質量黑洞與宿主星系的共同演化
Co-evolution of Supermassive Black Holes and their Host Galaxies with Galaxy Mergers
指導教授: 黃崇源
Chorng-Yuan Hwang
陳科榮
Ke-Jung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 44
中文關鍵詞: 星系演化計算天文物理合併星系超大質量黑洞恆星形成星際介質星系核球宇宙學
外文關鍵詞: Galaxy Evolution, Computational Astrophysics, Galaxy Merger, Supermassive Black Hole, Star Formation, Interstellar Medium, Galactic Bulge, Cosmology
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 星系合併對於星系演化是至關重要的過程,藉由階層式結構形成模型,星系的結構得以與宇宙學的理論連結,並且解釋碰撞星系能歷顯著的成長期,而星系中的超大質量黑洞也會同時演化,然而,合併事件往往需數億年來完成,我們無法觀測任意事件的完整細部過程,所以唯一能研究星系合併從開始到結束的物理細節是藉由數值模擬的方式;我們在美國國家科學研究計算中心的超級電腦上使用流體模擬程式--小精靈(GIZMO)進行模擬,它被認為可以適當地替複雜的星系交互作用與超大質量黑洞成長建立模型,其中模擬星系的物理參數來自觀測的結果(例如:蓋亞任務、阿塔卡瑪大型毫米及次毫米波陣列),利用如此的模擬並考慮不同的星系相關物理機制,我們可以研討超大質量黑洞與其宿主星系性質(像是核球、恆星形成率與氣體分佈等等)的共同演化。


    Galaxy mergers are crucial processes in galaxy evolution. They hold the key to connect the galactic structure to cosmology through the hierarchical structure formation, which explains that galaxy pairs undergoing a significant transitional stage, and the supermassive black holes (SMBHs) in the galaxies also evolve simultaneously. However, we cannot observe the entire process of any merger events, which take longer than a few billion years, so the only way to study the physics of galaxy mergers from beginning to the end is by utilizing numerical simulations. The hydrodynamics simulation code we used is called GIZMO, which is appropriate to model the processes of the complicated galaxy interactions and SMBH growth. We simulated galaxies with physical parameters based on the observational results (e.g. Gaia, ALMA) and run our simulations on powerful supercomputers at the National Energy Research Scientific Computing Center (NERSC) in the USA. By performing a suite of simulations with different physical conditions, we can investigate the co-evolution between SMBHs and their host galaxies for some properties such as bulge, star formation rate, gas distribution, and so on.

    摘要v Abstract vi Contents vii 1 Introduction 1 2 Numerical Methods 4 2.1 GIZMO code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 ISM and Stellar physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Modeling the Supermassive Black Hole in Galaxy simulation . . . . . . . . . . . . . . . 6 2.3.1 The Growth of Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.2 Feedbacks from SMBH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Results 11 3.1 Evolution of the SMBH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 The Growth of the SMBH in an Isolated Galaxy . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 Rapid Growth of SMBH with Major Merger . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Properties of Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 SFRs in an Isolated Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Merger-driven Starburst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Bulge Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 The Bulge Growth with Minor Merger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Discussion 27 5 Conclusion 29 Bibliography 30

    [1] M. Aller and D. Richstone, “Host galaxy bulge predictors of supermassive black hole
    mass,” The Astrophysical Journal, vol. 665, no. 1, p. 120, 2007.
    [2] J. E. Barnes and L. E. Hernquist, “Fueling starburst galaxies with gas-rich mergers,” The
    Astrophysical Journal, vol. 370, pp. L65–L68, 1991.
    [3] J. Barrera-Ballesteros, S. Sánchez, B. Garcı́a-Lorenzo, et al., “Central star formation and
    metallicity in califa interacting galaxies,” Astronomy & Astrophysics, vol. 579, A45, 2015.
    [4] A. F. Bluck, C. J. Conselice, R. J. Bouwens, et al., “A surprisingly high pair fraction for
    extremely massive galaxies at z 3 in the goods nicmos survey,” Monthly Notices of the
    Royal Astronomical Society: Letters, vol. 394, no. 1, pp. L51–L55, 2009.
    [5] A. Collette, Python and HDF5: unlocking scientific data. ” O’Reilly Media, Inc.”, 2013.
    [6] C. Cortijo-Ferrero, R. G. Delgado, E. Pérez, et al., “The spatially resolved star formation
    history of mergers-a comparative study of the lirgs ic 1623, ngc 6090, ngc 2623, and mice,”
    Astronomy & Astrophysics, vol. 607, A70, 2017.
    [7] T. Di Matteo, V. Springel, and L. Hernquist, “Energy input from quasars regulates the
    growth and activity of black holes and their host galaxies,” nature, vol. 433, no. 7026,
    pp. 604–607, 2005.
    [8] A. Feoli, L. Mancini, F. Marulli, et al., “The smbh mass versus mg sigma 2 relation: A
    comparison between real data and numerical models,” General Relativity and Gravitation,
    vol. 43, no. 4, pp. 1007–1024, 2011.
    [9] L. Ferrarese, “Beyond the bulge: A fundamental relation between supermassive black holes
    and dark matter halos,” The Astrophysical Journal, vol. 578, no. 1, p. 90, 2002.
    [10] L. Ferrarese and D. Merritt, “A fundamental relation between supermassive black holes
    and their host galaxies,” The Astrophysical Journal Letters, vol. 539, no. 1, p. L9, 2000.
    [11] C. Gaia and G. Bono, “Gaia data release 1. summary of the astrometric, photometric, and
    survey properties,” 2016.
    [12] A. Georgakakis, D. A. Forbes, and R. P. Norris, “Cold gas and star formation in a merging
    galaxy sequence,” Monthly Notices of the Royal Astronomical Society, vol. 318, no. 1,
    pp. 124–138, 2000.
    [13] A. W. Graham and S. P. Driver, “A log-quadratic relation for predicting supermassive
    black hole masses from the host bulge sérsic index,” The Astrophysical Journal, vol. 655,
    no. 1, p. 77, 2007.
    [14] A. W. Graham, P. Erwin, N. Caon, et al., “A correlation between galaxy light concentration
    and supermassive black hole mass,” The Astrophysical Journal Letters, vol. 563,
    no. 1, p. L11, 2001.
    [15] E. Griv, M. Gedalin, P. Pietrukowicz, et al., “The distance from the sun to the centre and
    the shape of the old bulge in the galaxy: 16 221 ogle rr lyrae stars,” Monthly Notices of
    the Royal Astronomical Society, vol. 499, no. 1, pp. 1091–1098, 2020.
    [16] M. Y. Grudić, P. F. Hopkins, C.-A. Faucher-Giguère, et al., “When feedback fails: The
    scaling and saturation of star formation efficiency,” Monthly Notices of the Royal Astronomical
    Society, vol. 475, no. 3, pp. 3511–3528, 2018.
    [17] N. Häring and H.-W. Rix, “On the black hole mass-bulge mass relation,” The Astrophysical
    Journal Letters, vol. 604, no. 2, p. L89, 2004.
    [18] P. F. Hopkins, “A new class of accurate, mesh-free hydrodynamic simulation methods,”
    Monthly Notices of the Royal Astronomical Society, vol. 450, no. 1, pp. 53–110, 2015.
    [19] P. F. Hopkins, L. Hernquist, T. J. Cox, et al., “A unified, merger-driven model of the origin
    of starbursts, quasars, the cosmic x-ray background, supermassive black holes, and galaxy
    spheroids,” The Astrophysical Journal Supplement Series, vol. 163, no. 1, p. 1, 2006.
    [20] P. F. Hopkins and E. Quataert, “An analytic model of angular momentum transport by
    gravitational torques: From galaxies to massive black holes,” Monthly Notices of the Royal
    Astronomical Society, vol. 415, no. 2, pp. 1027–1050, 2011.
    [21] P. F. Hopkins, P. Torrey, C.-A. Faucher-Giguère, et al., “Stellar and quasar feedback in
    concert: Effects on agn accretion, obscuration, and outflows,” Monthly Notices of the Royal
    Astronomical Society, vol. 458, no. 1, pp. 816–831, 2016.
    [22] P. F. Hopkins, A. Wetzel, D. Kereš, et al., “Fire-2 simulations: Physics versus numerics
    in galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 480, no. 1,
    pp. 800–863, 2018.
    [23] J. D. Hunter, “Matplotlib: A 2d graphics environment,” IEEE Annals of the History of
    Computing, vol. 9, no. 03, pp. 90–95, 2007.
    [24] K. V. Johnston, L. Hernquist, and M. Bolte, “Fossil signatures of ancient accretion events
    in the halo,” arXiv preprint astro-ph/9602060, 1996.
    [25] R. Joseph and G. Wright, “Recent star formation in interacting galaxies–ii. super starbursts
    in merging galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 214,
    no. 2, pp. 87–95, 1985.
    [26] M. Kaufman, K. Sheth, C. Struck, et al., “Co observations of the interacting galaxy pair
    ngc 5394/95,” The Astronomical Journal, vol. 123, no. 2, p. 702, 2002.
    [27] J.-h. Kim, O. Agertz, R. Teyssier, et al., “The agora high-resolution galaxy simulations
    comparison project. ii. isolated disk test,” The Astrophysical Journal, vol. 833, no. 2,
    p. 202, 2016.
    [28] J.-h. Kim, J. H. Wise, and T. Abel, “Galaxy mergers with adaptive mesh refinement:
    Star formation and hot gas outflow,” The Astrophysical Journal Letters, vol. 694, no. 2,
    p. L123, 2009.
    [29] A. King and K. Pounds, “Powerful outflows and feedback from active galactic nuclei,”
    Annual Review of Astronomy and Astrophysics, vol. 53, pp. 115–154, 2015.
    [30] J. H. Knapen, M. Cisternas, and M. Querejeta, “Interacting galaxies in the nearby universe:
    Only moderate increase of star formation,” Monthly Notices of the Royal Astronomical
    Society, vol. 454, no. 2, pp. 1742–1750, 2015.
    [31] J. Kormendy and L. C. Ho, “Coevolution (or not) of supermassive black holes and host
    galaxies,” Annual Review of Astronomy and Astrophysics, vol. 51, pp. 511–653, 2013.
    [32] J. Kormendy and D. Richstone, “Inward bound—the search for supermassive black holes
    in galactic nuclei,” Annual Review of Astronomy and Astrophysics, vol. 33, no. 1, pp. 581–
    624, 1995.
    [33] A. Lamberts, S. Garrison-Kimmel, D. Clausen, et al., “When and where did gw150914
    form?” Monthly Notices of the Royal Astronomical Society: Letters, vol. 463, no. 1, pp. L31–
    L35, 2016.
    [34] T. R. Lauer, S. Faber, D. Richstone, et al., “The masses of nuclear black holes in luminous
    elliptical galaxies and implications for the space density of the most massive black holes,”
    The Astrophysical Journal, vol. 662, no. 2, p. 808, 2007.
    [35] E. Li, “Modelling mass distribution of the milky way galaxy using gaia billion-star map,”
    arXiv preprint arXiv:1612.07781, 2016.
    [36] D. Lynden-Bell, “Galactic nuclei as collapsed old quasars,” Nature, vol. 223, no. 5207,
    pp. 690–694, 1969.
    [37] J. Magorrian, S. Tremaine, D. Richstone, et al., “The demography of massive dark objects
    in galaxy centers,” The Astronomical Journal, vol. 115, no. 6, p. 2285, 1998.
    [38] A. Marconi and L. K. Hunt, “The relation between black hole mass, bulge mass, and
    near-infrared luminosity,” The Astrophysical Journal Letters, vol. 589, no. 1, p. L21, 2003.
    [39] R. McLure and J. Dunlop, “On the black hole-bulge mass relation in active and inactive
    galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 331, no. 3, pp. 795–804,
    2002.
    [40] C. Mihos and L. Hernquist, “Gasdynamics and starbursts in major mergers,” arXiv preprint
    astro-ph/9512099, 1995.
    [41] D. J. Mortlock, S. J. Warren, B. P. Venemans, et al., “A luminous quasar at a redshift of
    z= 7.085,” Nature, vol. 474, no. 7353, pp. 616–619, 2011.
    [42] T. Naab and A. Burkert, “Statistical properties of collisionless equal-and unequal-mass
    merger remnants of disk galaxies,” The Astrophysical Journal, vol. 597, no. 2, p. 893, 2003.
    [43] M. Neeleman, J. X. Prochaska, N. Kanekar, et al., “A cold, massive, rotating disk galaxy
    1.5 billion years after the big bang,” Nature, vol. 581, no. 7808, pp. 269–272, 2020.
    [44] C. Park and Y.-Y. Choi, “Combined effects of galaxy interactions and large-scale environment
    on galaxy properties,” The Astrophysical Journal, vol. 691, no. 2, p. 1828, 2009.
    [45] W. Pearson, L. Wang, M. Alpaslan, et al., “Effect of galaxy mergers on star-formation
    rates,” Astronomy & Astrophysics, vol. 631, A51, 2019.
    [46] V. Perret, F. Renaud, B. Epinat, et al., “Evolution of the mass, size, and star formation
    rate in high redshift merging galaxies-mirage–a new sample of simulations with detailed
    stellar feedback,” Astronomy & Astrophysics, vol. 562, A1, 2014.
    [47] L. Posti and A. Helmi, “Mass and shape of the milky way’s dark matter halo with globular
    clusters from gaia and hubble,” Astronomy & Astrophysics, vol. 621, A56, 2019.
    [48] D. J. Price, “Splash: An interactive visualisation tool for smoothed particle hydrodynamics
    simulations,” Publications of the Astronomical Society of Australia, vol. 24, no. 3, pp. 159–
    173, 2007.
    [49] E. Quataert, R. Narayan, and M. J. Reid, “What is the accretion rate in sagittarius a*?”
    The Astrophysical Journal Letters, vol. 517, no. 2, p. L101, 1999.
    [50] T. R. Saitoh, H. Daisaka, E. Kokubo, et al., “Toward first-principle simulations of galaxy
    formation: Ii. shock-induced starburst at a collision interface during the first encounter
    of interacting galaxies,” Publications of the Astronomical Society of Japan, vol. 61, no. 3,
    pp. 481–486, 2009.
    [51] D. Sanders and I. Mirabel, “Luminous infrared galaxies,” Annual Review of Astronomy
    and Astrophysics, vol. 34, no. 1, pp. 749–792, 1996.
    [52] F. Schweizer, “Merger-induced starbursts,” in Starbursts, Springer, 2005, pp. 143–152.
    [53] J. L. Sersic, “Atlas de galaxias australes,” Cordoba, 1968.
    [54] N. Soker and Y. Meiron, “Correlation of black hole and bulge masses: Driven by energy but
    correlated with momentum,” Monthly Notices of the Royal Astronomical Society, vol. 411,
    no. 3, pp. 1803–1808, 2011.
    [55] V. Springel, “The cosmological simulation code gadget-2,” Monthly notices of the royal
    astronomical society, vol. 364, no. 4, pp. 1105–1134, 2005.
    [56] V. Springel, T. Di Matteo, and L. Hernquist, “Modelling feedback from stars and black
    holes in galaxy mergers,” Monthly Notices of the Royal Astronomical Society, vol. 361,
    no. 3, pp. 776–794, 2005.
    [57] V. Springel and L. Hernquist, “Cosmological smoothed particle hydrodynamics simulations:
    A hybrid multiphase model for star formation,” Monthly Notices of the Royal Astronomical
    Society, vol. 339, no. 2, pp. 289–311, 2003.
    [58] E. Takeo, K. Inayoshi, K. Ohsuga, et al., “Super-eddington growth of black holes in the
    early universe: Effects of disc radiation spectra,” Monthly Notices of the Royal Astronomical
    Society, vol. 488, no. 2, pp. 2689–2700, 2019.
    [59] A. Toomre, “Mergers and some consequences,” in Evolution of Galaxies and Stellar Populations,
    1977, p. 401.
    [60] S. Tremaine, K. Gebhardt, R. Bender, et al., “The slope of the black hole mass versus
    velocity dispersion correlation,” The Astrophysical Journal, vol. 574, no. 2, p. 740, 2002.
    [61] E. Valenti, M. Zoccali, O. Gonzalez, et al., “Stellar density profile and mass of the milky
    way bulge from vvv data,” Astronomy & Astrophysics, vol. 587, p. L6, 2016.
    [62] B. Venemans, E. Bañados, R. Decarli, et al., “The identification of z-dropouts in panstarrs1:
    Three quasars at 6.5< z< 6.7,” The Astrophysical Journal Letters, vol. 801, no. 1,
    p. L11, 2015.
    [63] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “Scipy 1.0: Fundamental algorithms for
    scientific computing in python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.
    [64] M. Volonteri and M. J. Rees, “Rapid growth of high-redshift black holes,” The Astrophysical
    Journal, vol. 633, no. 2, p. 624, 2005.
    [65] A. Wandel, “Black holes of active and quiescent galaxies. i. the black hole-bulge relation
    revisited,” The Astrophysical Journal, vol. 565, no. 2, p. 762, 2002.
    [66] S. D. White and M. J. Rees, “Core condensation in heavy halos: A two-stage theory for
    galaxy formation and clustering,” Monthly Notices of the Royal Astronomical Society,
    vol. 183, no. 3, pp. 341–358, 1978.
    [67] R. P. Wiersma, J. Schaye, and B. D. Smith, “The effect of photoionization on the cooling
    rates of enriched, astrophysical plasmas,” Monthly Notices of the Royal Astronomical
    Society, vol. 393, no. 1, pp. 99–107, 2009.
    [68] X.-B. Wu and J. Han, “On black hole masses, radio-loudness and bulge luminosities of
    seyfert galaxies,” Astronomy & Astrophysics, vol. 380, no. 1, pp. 31–39, 2001.
    34.

    QR CODE
    :::