跳到主要內容

簡易檢索 / 詳目顯示

研究生: 侯士偉
Shih-Wei Hou
論文名稱: 廣義H2模糊控制-連續系統 線性分式轉換法
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 90
中文關鍵詞: 線性矩陣不等式廣義H2T-S模糊模型線性分式轉換法
外文關鍵詞: LMIs, Generalized H2, T-S fuzzy model, LFT
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文可分為兩大部分來進行討論,以不同形式的控制條件來研究相同系統的控制問題,其中第一部份是以三階 (cubic) 的形式來進行系統的分析與研究,而第二部份則是以二階 (quadratic) 的形式來對系統進行分析討論,其中兩者都是以蕭氏轉換 (Schur complement) 及全等轉換 (congruence transformation) 的方式對控制問題進行轉換之後的分析與推導。
    論文中所研究的是一個含有分式項的模糊系統控制問題,以線性分式轉換 (Linear fractional transformation, LFT) 為架構的動態輸出回饋控制器來使其穩定,並滿足廣義H2 (Generalized H2) 性能指標的要求。其分析最主要的方式是應用全等轉換的技巧來進行控制器的分析與設計,使含有分式項的模糊系統能達到穩定並滿足廣義 H2 的性能指標問題。在這個部分中,我們將控制器的架構以三階與二階兩種不同形式的方式表現出來。經過全等轉換之後,我們分別可以得到兩組線性矩陣不等式 (Linear matrix inequalities, LMIs) 來對原本的控制問題求解。除了上述兩個線性矩陣不等式外,我們還要考慮比例條件 (scaling condition) 的限制。然後,以一個球桿系統的例子來進行電腦模擬。最後舉一個含有不確定項的模糊系統來印證 LFT模糊系統是可以用來討論含有不確定項的模糊系統,以質簧系統的例子來進行電腦模擬分析。


    No

    第一章 簡介 1.1 文獻回顧 1.2 研究動機 1.3 論文結構 1.4 符號標記 第二章 三階數學模型與廣義H2性能指標 2.1 數學模型 2.2 廣義H2性能指標 第三章 三階LFT動態輸出回饋控制器的設計 3.1 廣義H2性能條件 3.2 廣義H2性能寬鬆條件 第四章 球桿系統例子 4.1 球桿系統數學架構 4.2 球桿系統求解 第五章 二階數學模型與廣義H2性能指標 5.1 數學模型 5.2 廣義H2性能指標 第六章 二階LFT動態輸出回饋控制器的設計 6.1 廣義H2性能條件 6.2 廣義H2性能寬鬆條件 第七章 球桿系統例子 7.1 球桿系統數學架構 7.2 球桿系統求解 第八章 特殊情況數學模型與廣義H2性能指標 8.1 數學模型 8.2 廣義H2性能指標 8.3 廣義H2性能條件 第九章 質簧系統例子 9.1 質簧系統數學架構 9.2 質簧系統求解 第十章 結論與未來研究方向 10.1 總結 10.2 未來研究方向

    [1]T. Takagi and M. Sugeno, ``Fuzzy identification of systems and its applications to modeling and control'', IEEE Trans. Syst. Man & Cybern., vol. 15, no. 1, pp. 116--132, Jan. 1985.
    [2]M. Sugeno and G.T. Kang, ``Structure identification of Fuzzy model'', Fuzzy Sets and Systems, vol. 28, pp. 15--33, 1988.
    [3]K. Tanaka and M. Sugeno, ``Stability analysis and design of fuzzy control systems'', Fuzzy Sets and Systems, vol. 45, pp. 135--156, 1992.
    [4]T. Takagi and M. Sano, ``Trajectory stabilization of a model car via fuzzy control'', Fuzzy Sets and Systems, vol. 70, pp. 155--170, 1995.
    [5]H.O. Wang, K. Tanaka, and M.F. Griffin, ``An approach to fuzzy control of nonliner systems: stability and design issues'', IEEE Trans. Fuzzy systems, vol. 4, no. 1, pp. 14--23, Feb. 1996.
    [6]K. Tanka, T. Ikeda, and H.O. Wang, ``Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs'', IEEE Trans. Fuzzy systems, vol. 6, no. 2, pp. 250--256, May 1998.
    [7]S.G. Cao, N.W. Rees, and G.Feng, ``Analysis and design of fuzzy control systems using dynamic fuzzy global model'', Fuzzy Sets and Systems, vol. 75, pp. 47--62, 1995.
    [8]S.G. Cao, N.W. Rees, and G.Feng, ``Stability analysis of fuzzy control systems'', IEEE Trans. Syst. Man & Cybern.-part B: Cybernetics, vol. 26, no. 1, pp. 201--204, Feb. 1996.
    [9]G. Feng, S.G. Cao, N.W. Rees, and C.K. Chak, ``Design of fuzzy control systems with stability'', Fuzzy Sets and Systems, vol. 85, pp. 1--10, 1997.
    [10]S.H. Zak, ``Stabilizing fuzzy system models using linear controllers'', IEEE Trans. Fuzzy systems, vol. 7, no. 2, pp. 236--240, Apr. 1999.
    [11]I.R. Petersen, ``A stabilization algorithm for a class of uncertain linear systems'', Syst. & Cont. Lett., vol. 8, pp. 351--357, 1987.
    [12]D.S. Bernstein, ``Robust static and dynamic output-feedback stablization: deterministic and stocahstic perspectives'', IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1076--1084, Dec. 1987.
    [13]D.S. Bernstein, ``The optimal projection equations for static and dynamic output feedback: the singular case'', IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1139--1143, Dec. 1987.
    [14]K. Zhou and P.P. Khargonekar, ``Robust stabilization of linear systems with norm-bounded time-varying uncertainty'', Syst. & Cont. Lett., vol. 10, pp. 17--20, 1988.
    [15]P.P. Khargonekar, I.R. Petersen, and K. Zhou, ``Robust stabilization of uncertain linear systems: quadratic stabilizability and H∞ control theory'', IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356--361, Mar. 1990.
    [16]L. Xie, M. Fu, and C.E. deSouza, ``H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback'', IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1253--1256, Aug. 1992.
    [17]J.C. Geromel, J. Bernussou, and M.C. deOliveira, ``H2-norm optimization with constrained dynamic output feedback controllers: decentralized and reliable control'', IEEE Trans. Automat. Contr., vol. 44, no. 7, pp. 1449--1454, July 1999.
    [18]S.G. Cao, N.W. Rees, and G. Feng, ``Analysis and design of fuzzy control systems using dynamic fuzzy state space models'', IEEE Trans. Fuzzy systems, vol. 7, pp. 192--200, 1999.
    [19]G. Feng and J. Ma, ``Quadratic stabilization of uncertain discrete-time fuzzy dynamic system'', IEEE Trans. Circuits and Systems-I: Fundamental theory and Applications, vol. 48, no. 11, pp. 1137--1344, 2001.
    [20]G. Feng, ``Approach to quadratic stabilization of uncertain fuzzy dynamic system'', IEEE Trans. Circuits and Systems-I: Fundamental theory and Applications, vol. 48, no. 6, pp. 760--769, 2001.
    [21]D.S. Berstein and W.M. Haddad, ``LQG control with an H∞ performance bound: a Riccati equation approach'', IEEE Trans. Automat. Contr., vol. 34, no. 3, pp. 293--305, Mar. 1989.
    [22]W.M. Haddad and D.S. Berstein, ``Generalized Riccati equations for the full- and reduced-order mixed-norm H2/H∞ standard problem'', Syst. & Cont. Lett., vol. 14, pp. 185--197, 1990.
    [23]J.Li, D.Niemann, H.O. Wang, and K. Tanaka, ``Parallel distributed compensation for Takagi-Sugeno fuzzy models: multiobjective controller design'',in Proc. of American Control Conf., San Diego CA., June 1999, pp. 1832--1836.
    [24]C. Scherer, P. Gahinet, and M. Chilali, ``Multiobjective output-feedback control via LMI optimization'', IEEE Trans. Automat. Contr., vol. 42, no. 7, pp. 896--911, July 1997.
    [25]H.-J. Kang, C.Kwon, Y.-H. Yee, and M. Park, ``L2 robust stability analysis for the fuzzy feedback linearization regulator'', in Proc. of the 6th IEEE Int''l Conf. on Fuzzy Systems, vol. 1, pp. 277--280, 1997.
    [26]H.-J. Kang, C.Kwon, Y.-H. Yee, and M. Park, ``Robust stability analysis and design method for the fuzzy feedback linearization regulator'', IEEE Trans. Fuzzy systems, vol. 6, no. 4, pp. 464--472, Nov. 1998.
    [27]K. Kiriakidis, A. Grivas, and A. Tzes, ``Quadratic stability analysis of the Takagi-Sugeno fuzzy model'', Fuzzy Sets and Systems, vol. 98, pp. 1--14, 1998.
    [28]M.C.M. Teixeira and S.H. Zak, ``Stabilizing controller design for uncertain nonlinear systems using fuzzy models'', IEEE Trans. Fuzzy systems, vol. 7, no. 2, pp. 133--142, Apr. 1999.
    [29]S.G. Cao, N.W. Rees, and G. Feng, ``Quadratic stability anaiysis and design of continous fuzzy control systems'', Int''l. Journal on Systems Science, vol. 27, no. 2, pp. 193--200, 1996.
    [30]H.J. Lee, J.B. Park, and G. Chen, ``Robust fuzzy control of nonlinear systems with parametric uncertainties'', IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 369--379, April 2001.
    [31]K. Kiriakidis, ``Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities'', IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269--277, April 2001.
    [32]K. Tanka, T. Ikeda, and H.O. Wang, ``Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities'', IEEE Trans. Fuzzy systems, vol. 4, no. 1, pp. 1--13, Feb. 1996.
    [33]K. Tanaka, T. Hori, and H.O. Wang, ``New robust and optimal designs for Takagi-Sugeno fuzzy control systems'', in Proc. of 1999 IEEE Int''l Conf. on Control Appl., pp. 415--420, 1999.
    [34]S.G. Cao, N.W. Rees, and G. Feng, ``H∞ control of nonlinear continous-time systems based on dynamical fuzzy models '', Int''l. Journal on Systems Science, vol. 27, no. 9, pp. 821--830, 1996.
    [35]S.G. Cao, N.W. Rees, and G. Feng, ``H∞ control of uncertain fuzzy continous-time systems'', Fuzzy Sets and Systems, vol. 115, pp. 171--190, 2000.
    [36]G. Feng, S.G. Cao, N.W. Rees, C.M. Cheng, and J. Ma, ``H∞ control of continous time fuzzy dymanic systems'', IEEE Int''l. Conf. Fuzzy systems, vol. 2, pp. 1141--1146, 1997.
    [37]Z. Han and G. Feng, ``State feedback H∞ controller design of fuzzy dymanic systems using LMI techniques'', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 538--544, May. 1998.
    [38]Z. Han, G. Feng, and N. Zhang, ``Dynamic output feedback H∞ controller design of fuzzy dynamic systems using LMI techniques'', in Proc. of Second International Conference on Knowledge-Based Intelligent Electronic Systems, vol. 2, pp. 343--352, 1998.
    [39]A. Jadbabaie, M. Jamshidi, and A. Titli, ``Guaranteed-cost design of continous-time Takagi-Sugeno fuzzy controller via linear matrix inequalities'', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 268--273, May. 1998.
    [40]S.-K. Hong and R. Langari, ``Synthesis of an LMI-based fuzzy control system with guaranteed optimal H∞ performance'', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 422--427, May. 1998.
    [41]B.S. Chen, C.S. Tseng, and H.J. Uang, ``Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach'', IEEE Trans. Fuzzy systems, vol. 8, no. 3, pp. 249--265, June 2000.
    [42]Y.Y. Cao and P.M. Frank, ``Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems'', IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406--415, August 2000.
    [43]K.R. Lee, E.T. Jeung, and H.B. Park, ``Robust fuzzy H∞ control of uncertain nonlinear systems via state feedback: an LMI approach'', Fuzzy Sets and Systems, vol. 120, pp. 123--134, 2001.
    [44]S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA., 1994.
    [45]J.C. Geromel and M.C. deOliveira, ``H2 and H∞ robust filtering for convex bounded uncertain systems'', IEEE Trans. Automat. Contr., vol. 46, no. 1, pp. 100--107, Jan. 2001.
    [46]K. Zhou, Essentials of Robust Control, Prentice-Hall, Upper Saddle River, NJ., 1998.
    [47]H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, ``New fuzzy control model and dynamic output feedback parallel distributed compensation'', IEEE Trans. Fuzzy Systems, 2002, submitted for publication.
    [48]K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, NY, 2001.
    [49]J.C. Lo and S.W. Hou, ``Generalized H2 control for fuzzy systems with LFT framework'', in Proc. 10th Nat''l Conf. Fuzzy Theory and Appl., Shinchu, TW, November 2002, pp. 19--22.

    QR CODE
    :::