| 研究生: |
楊士弘 Shih-Hong Yang |
|---|---|
| 論文名稱: |
以地理統計方法進行大範圍基地地盤改良評估 The evaluation of ground improvement techniques of a construction site using geostatistical approach |
| 指導教授: |
黃文昭
Wen-Chao Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 半變異數 、半變異圖 、克利金法 、R-Squared法 、地盤改良 |
| 外文關鍵詞: | Semivariance, Semi-variogram, Kriging, ground improvement technique, R-Squared |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本篇研究中將探討中東地區某工程基地其共193組現地鑽孔資料中之SPT-N值、地下水位深度、細粒料含量及鹽土深度,以半異數函數描述上述四種土壤參數在水平空間變異性。另外,以克利金法作上述四種土壤參數在各自半變異圖條件下之推估,以求得未鑽探點之相關地工參數,接著依克利金法推估之地工參數利用幾種符合此研究中所需之地盤改良方法,依各工法之適用性及限制性結合統計方法得到的預測結果進行大範圍基地的地盤改良評估。為了更進一步了解鑽孔數目對於半變異數函數的影響,本研究亦將原鑽孔數分別減少30孔、50孔、70孔與90孔分別進行分析,以了解鑽孔數目對空間變異性之影響。
主要結果有(1) SPT-N值、細粒料含量、地下水深度及鹽土深度,其各自最佳擬合函數下求得之影響範圍分別為572公尺、673公尺、516公尺、346公尺。(2)在隨著抽離鑽孔的數目變多時,求得各自相對應之參數值、總體半變異數、影響範圍,其變異係數逐漸增大。(3)以SPT-N值大於15者為不需要進行地盤改良之區域占80%,需要地盤改良之區域,分別由滾壓夯實工法佔約1.5%,動力夯實工法佔了約0.07%,需礫石樁工法之區域佔了約14%,快速衝擊夯實工法佔了約4.5%。
關鍵字:半變異數、半變異圖、克利金法、地盤改良、R-Squared法
Abstract
In this research, the horizontal variability of standard penetration test N values (SPT-N), the fines content, the depth of groundwater table, and the depth of Sabkha are discussed in terms of the spatial variability through semivariance and semi-variogram. According to the results of semivariance and semi-variogram, the corresponding unknown values in the study areas are estimated within range and sill by Kriging method. There are total 193 boring logs at the construction site. It is about 8 km in length and 3 km in width. The soil boring depths are in the range of 10 to 30 meters. Since the construction site locates in a deserted area, the subsurface condition is mostly silty and clayey sands. In this research, there are the discussions of applicability and restrictions considering various ground improvement techniques. Various ground improvement techniques are suggested through the estimated geotechnical values by Simple Kriging. In this study, the variability of semivariance and parameters in the semivariogram was also investigated by randomly choosing a given number of soil borings from the database. The selected number of borings are 30, 50, 70 and 90, respectively. The main findings are (1) the range of SPT-N values is 572 m, the range of the fines content is 673 m, the range of the depth of groundwater is 516m, and the range of the depth of Sabkha is 342m. (2) When the number of borings decreases, the coefficients of variation of the estimated values such as the sill, and range in the semivariogram increase. (3)Based on the assumption that areas with SPT-N values of 15 or larger blows do not need ground improvement, the areas that do not need ground improvement is about 80%. With other geotechnical parameters such as the ground water level depth, percent of fine contents and depth of Sabkha, it was estimated that area needing roller compaction is about 1.5%, the areas using dynamic compaction is about 0.07%, the areas using rapid impact compaction is about 4.5%,and the areas using stone column is about 14%. The percentage of ground improvement technique is influenced mostly by the variance of the depth of Sabkha.
Key words: Semivariance、Semi-variogram 、Kriging、ground improvement technique、R-Squared
參考文獻
1. Gambin,M. P. “Dynamic Consolidation of Volcanic Ash in Sumatra,”9th Southeast Asian Geotechnical Conference, Thailand,pp145-158(1978).
2. Leonards, G. A., Cutter, W. A., and Holtz, R. D., “Dynamic Compaction of Granular Soils,” Journal of the Geotechnical Enginnering Division, ASCE, Vol. 106, No. GT1, pp.35-44 (1980).
3. Harr, M. E. (1984). ‘‘Reliability-based design in civil engineering.’’ 1984 Henry M. Shaw Lecture, Dept. of Civil Engineering, North Carolina State University, Raleigh, N.C.
4. Harr, M. E. (1987) Reliability-based design in Civil Engineering: McGraw-Hill, Inc.
5. Kulhawy, F. H. (1992). ‘‘On the evaluation of soil properties.’’ ASCE Geotech. Spec. Publ. No. 31, 95–115.
6. Lacasse, S., and Nadim, F. (1997). ‘‘Uncertainties in characterizing soil properties.’’ Publ. No. 201, Norwegian Geotechnical Institute, Oslo, Norway, 49–75.
7. Benson, C. H., Daniel, D. E., and Boutwell, G. P. (1999). ‘‘Field performance of compacted clay liners.’’ J. Geotech. and Geoenvir. Engrg., ASCE, 125(5), 390–403.
8. Duncan, J.M. (2000) Factors of safety and reliability in geotechnical engineering, Journal of geotechnical and geoenvironmental engineering, Vol. 126, No. 4, pp 307-316.
9. Phoon, K.K., Quek, S.T., and An, P. (2003) Identification of Statistically Homogeneous Soil Layers Using Modified Bartlett Statistics, Journal of Geoenvironmental Engineering, ASCE, 129:7, pp. 649-659.
10. Fenton, G. A. and Griffiths, D. V. (2008) Risk Assessment in Geotechnical Engineering, John Wiley & Sons, Inc., Hoboken, New Jersey.
11. Fugro Consultants, Inc, “Phase 1 – Geotechnical Study New Refinery Project – EPC1 ~ EPC5”, March 2009.
12. 范維垣、史美筠、裘以惠,「關於強夯法加固地基的幾個問題」,地基處理學術會議論文選集,第7~15頁(1980)。
13. 鳴海直信,「最近軟弱地盤對策工法設計施工例—動力壓密工法」,月刊建設,第69 ~78頁(1987)。
14. 史美筠,「強夯法施工參數的確定及施工中震動影響問題」,土建專題情報資料—軟土地基處理與強夯法,中國建築技術發展中心文獻部,第30~33頁(1988)。
15. 吳建閩,「礫石樁應用於抗液化之設計及施工」,地工技術,第七十八期,第59-74 頁(1990) 。
16. 余明山、鍾毓東、陳福成、王傳奇,「新生地振動夯實砂樁改良案例探討」,地工技術雜誌,第三十八期,第30-46頁(1992)。
17. 潘少昀、黃子明,「動力壓密工法在海埔新生地地盤改良工程之應用」,第六屆大地工程學術研究討論會,阿里山,第1071-1082頁(1995)。
18. 蘇鼎鈞、魏文德、楊財欽、陳世浩,「基隆河舊河道垂直排水帶現場試驗和成效評估」,地工技術雜誌,第五十一期,第79-90頁(1995)。
19. 林建良等,抽砂回填地土壤改良之動壓密工法有效影響深度之評估,第七屆大地工程學術研究討論會,第883-890頁(1997)。
20. 中鼎工程服務有限公司,台塑重工大地工程顧問工作礫石樁工法文獻整理及設計理論之探討報告(1998)。
21. 張吉佐、洪明瑞、張崇義、張惠文,「台灣地區地盤改良技術應用現況」,地工技術,第七十八期,第5-18頁(2000) 。
22. 張吉佐、曾文德、許建裕,「台灣濱海工業區的地盤改良工法」,地工技術,第九十三期,第53-68頁(2002) 。
23. 張永欣,「以多變量地質統計方法進行雨量空間內插」,國立中央大學應用地質研究所碩士論文,中壢(2007) 。
24. 賈之誼,「土壤工程性質水平方向空間變異性探討-以標準貫入試驗N值為例」,國立中央大學土木工程學系碩士論文,中壢(2012) 。