| 研究生: |
周玟汝 Wen-ju Chou |
|---|---|
| 論文名稱: |
利用聚苯乙烯種子製備具交聯結構之均一粒徑微米球 Preparation of cross-linked structure monodisperse microspheres by using polystyrene seed |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 二階段溶脹法 、均一粒徑 、交聯粒子 、耐溶劑 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以二階段溶脹法(Two-Step Swelling)來製備粒徑大於6 μm且具有高交聯結構之均一粒徑微米球。3.30 μm均一粒徑聚苯乙烯(PS)微米球種子可從分散聚合法(Dispersion Polymerization)來合成。
首先探討在二階段溶脹聚合法中,添加單體苯乙烯(Styrene)或甲基丙烯酸甲酯(MMA)來製備PS/PS或PS/PMMA的可行性,由結果得知只有MMA能溶脹成均一粒徑之大粒子。當添加5.0 wt% 穩定劑 (PVA)、1.0 wt% 起始劑(BPO)、0.1 g助溶脹劑(環己烷)、0.2 g水相抑制劑(亞硝酸鈉)及8 g單體可得到均一粒徑且粒徑大小為6.67 μm之PS/PMMA微米球。
接下來在二階段溶脹聚合法中添加單體與交聯劑來製備PS/P(MMA-co-EGDMA)微米球,探討穩定劑(聚乙烯醇; PVA)、起始劑(過氧化二苯甲醯; BPO)、助溶脹劑(環己烷)、水相抑制劑(亞硝酸鈉)、單體(MMA)與交聯劑(二甲基丙烯酸乙二醇酯; EGDMA)之含量對微米球之均一性、型態、粒徑大小、耐溶劑性與耐熱性之影響。
結果顯示添加適量PVA(2.5 wt%)、環己烷(0~0.1 g)、亞硝酸鈉(0.2 g)有助於微米球之均一性。而當1.0 wt% BPO時,所得粒子因轉化率不完全造成表面凹陷,當BPO濃度增加為1.5 wt%時,可改善粒子表面凹陷問題,同時調整反應速率,可得平滑表面之微米球。
當EGDMA濃度為20 wt%時,隨著總單體(MMA+EGDMA)添加量增加能使溶脹微米球粒徑隨之增加。在總單體添加量為 5 g時,可得到均一粒徑且粒徑脹大(7.07 μm)為原始種子2倍以上之PS/P(MMA-co-EGDMA)微米球。另一方面,當EGDMA濃度增加也能使溶脹之微米球粒徑隨之增加,在EGDMA濃度為50 wt%而總單體添加量為6 g時,可得到粒徑將近原始種子三倍(9.48 μm)之PS/P(MMA-co-EGDMA)微米球。
經過耐THF溶劑的測試,可發現本研究所製備之EGDMA濃度大於20wt%之PS/P(MMA-co-EGDMA)高分子微米球確實具有良好的耐THF溶劑性質。由TGA結果顯示導入MMA與EGDMA之交聯高分子微米球之耐熱性質不如PS種子,但是微米球之10 wt%熱重損失下溫度(Td10)為255℃,遠大於其加工溫度。
Highly cross-linked and more than 6 µm monodisperse microspheres have been fabricated by two-step swelling polymerization. Polystyrene (PS) seed particle (3.30 µm and Cv 2.50 %) was prepared by dispersion polymerization.
At first, styrene (St) or methyl methacrylate (MMA) were added in the PS solution to investigate whether monodisperse PS/PS and PS/PMMA were prepared or not. The result showed only monodisperse PS/PMMA could be prepared in the two-step polymerization. The monodisperse 6.67 μm PS/PMMA microsphere could be prepared by adding 5.0 wt% stabilizer (polyvinyl alcohol; PVA), 1.0 wt% initiator (benzoyl peroxide; BPO), 0.1 g swelling agent (cyclohexane), 0.2 g inhibitor (NaNO2) and 8 g monomer (MMA) in the 0.1 g PS seed solution.
Then the effects of amount of PVA, BPO, cyclohexane, NaNO2, MMA and ethylene glycol dimethylacrylate (EGDMA) on the particle size, particle size distribution, solvent resistance, and thermal stability of PS/P(MMA-co-EGDMA) microsphere were discussed.
The results showed that the monodisperse PS/P(MMA-co-EGDMA) microsphere could be obtained by adding suitable amount of PVA (2.5 wt%), cyclohexane (0 or 0.1g), and NaNO2 (0.2 g) in 0.1 g PS seed solution. And these microspheres had uniform shape when the weight fraction of BPO was increased to 1.5 wt%.
When the weight fraction of EGDMA was fixed to 20 wt%, with increasing total amount of MMA and EGDMA, the particle size was increased. PS/P(MMA-co-EGDMA) monodisperse microsphere with 7.07 µm size was obtained by adding 5 g total amount of MMA and EGDMA. On the other hand, when the total amount of MMA and EGDMA was fixed to 6 g, with increasing the weight fraction of EGDMA, the particle size was increased. The PS/P(MMA-co-EGDMA) monodisperse microsphere with 9.48 µm was prepared by adding 50 wt% EGDMA.
The PS/P(MMA-co-EGDMA) particles with more 20 wt% EGDMA had excellent performance on solvent resistance. TGA results showed PS/P(MMA-co-EGDMA) suppressed the thermal stability of PS. So, introducing MMA or EGDMA to the system decreased the thermal stability of PS. But the temperature of 10 wt% loss (Td10) for PS/P(MMA-co-EGDMA) is 255 ℃, above the processing temperature.
[1] D.Horak, Uniform Polymer Beads of Micrometer Size. Acta Polymer 1996, 47: 20-28.
[2] Y. Dong-Guk, A. Jeong Ho, B. Jin-Young, A. Seong Deok, K. Seung-Youl, S, Kyung-Soo, Negatively Charged Ultrafine Black Particles of P(MMA-co-EGDMA) by Dispersion Polymerization for Electrophoretic Displays. Macromolecules 2005, 38: 7485-7491.
[3] H. Minami, Z. Wang, T. Yamashita, M. Okubo, Thermodynamic Analysis of the Morphology of Monomer-Adsorbed, Cross-linked Polymer Particles Prepared by the Dynamic Swelling Method and Seeded Polymerization. Colloid and Polymer Science 2003, 281: 246-252.
[4] T. Ellingsen, O. Aune, J. Ugelstad, S. Hagen, Monosized Stationary Phases for Chromatography. Journal of Chromatography 1990, 535: 147-161.
[5] T. Camli S, S. Senel, A. Tuncel, Cibacron Blue F3G-A-attached Uni-form and Macroporous Poly(styrene-co-divinylbenzene) Particles for Specific Albumin Adsorption. Journal of Biomaterials Science, Polymer Edition 1999, 10: 875-889.
[6] D. Horak, M. Karpisek, J. Turkova, M. Benes, Hydrazidefunctionalized Poly (2-hydroxyethyl metacrylate) Microspheres for Immobilization of Horseradish Peroxidase. Biotechnol. Prog 1999, 15: 208-215.
[7] I. Kulin L, P. Flodin, T. Ellingsen, J. Ugelstad, Monosized Polymer Particles in Size-exclusion Chromatography: I. Toluene as Solvent. Journal of Chromatography 1990, 514: 1-9.
[8] H. Kawaguchi, Functional Polymer Microspheres. Progress in Polymer Science 2000, 25: 1171-1210.
[9] M. J. Yim, K. W. Paik, Design and Understanding of AnisotropicConductive Films (ACFs) for LCD Packaging. Polymeric Electronics Packaging 1997: 233-242.
[10] Y. S. Eom, J. W. Baek, J. T. Moon, J.D. Nam, J. M. Kim, Characterization of Polymer Matrix and Low Melting Point Solder for Anisotropic Conductive Film. Microelectron. Eng. 2008, 85: 327-331.
[11] C. Ching-Wen, C. Chuh-Yung, Preparation of Monodisperse Polysty-rene Microspheres:effect of Reaction Parameters on Particle For-mation, and Optical Performances of its Diffusive Agent Application. Colloid Polym Sci. 2009, 287:1377-1389.
[12] E. Unsal, T. Camli S, S. Senel, A. Tuncel, Chromatographic Perfor-mance of Monodisperse–Macroporous Particles Produced by“Modified Seeded Polymerization.” I: Effect of Monomer/Seed Latex Ratio. Journal of Applied Polymer Science 2004, 92: 607-618.
[13] F. Gritti, I. Leonardis, J. Abia, G. Guiochon, Physical Properties and Structure of Fne Core–shell Particles Used as Packing Materials for Chromatography. Journal of Chromatography A 2010, 1217: 3819-3843.
[14] 笠井澄,高分子,1993, 42:929
[15] 笠井澄,高分子, 1995, 44:290
[16] K. Zhang, W. Wu, H. Meng, K. Guo, J.-F. Chen, Pickering Emulsion Polymerization: Preparation of Polystyrene/nano-SiO2 Composite Microspheres with Core-shell Structure. Powder Technology 2009, 190: 393-400.
[17] T. Yamamoto, M. Nakayama, Y. Kanda, K. Higashitani, Growth Mechanism of Soap-free Polymerization of Styrene Investigated by AFM. Journal of Colloid and Interface Science 2006, 297: 112-121.
[18] F. Zhang, Y. Ma, L. Liu, and W. Yang, Direct Observations of Three Nucleation/Growth Processes of Charge-Stabilized Dispersion Polymerizations with Varying Water/Methanol Ratios. J. Phys. Chem. 2010, 114: 10970-10978.
[19] N. M. B. Smeets, R. A. Hutchinson, and T. F. L. McKenna, Determina-tion of the Critical Chain Length of Oligomers in Dispersion Polymerization. ACS Macro Lett. 2012, 1: 171-174.
[20] 李仲軒, 「溶脹法製備具交聯結構之高分子均一粒徑微粒子」, 國立中央大學,化學工程與材料工程學系碩士論文(1999)
[21] B. Thomson, A. Rudin, G. Lajoie, Dispersion Copolymerization of Styrene and Divinylbenzene. II. Effect of Crosslinker on Particle Morphology. Journal of Applied Polymer Science 1996, 59: 2009-2028.
[22] J.W. Kim, K.D. Suh, Highly Monodisperse Crosslinked Polystyrene Microparticles by Dispersion Polymerization. Colloid Polym Sci. 1998, 276: 870-878.
[23] D. G. Yu, J. H. An, J. Y. Bae, S. D. Ahn, S. Y. Kang, and K. S. Suh, Negatively Charged Ultrafine Black Particles of P(MMA-co-EGDMA) by Dispersion Polymerization for Electrophoretic Displays. Macromolecules 2005, 38: 748-7491.
[24] J. S. Song and M. A. Winnik, Cross-Linked, Monodisperse, Mi-cron-Sized Polystyrene Particles by Two-Stage Dispersion Polymeri-zation. Macromolecules 2005, 38: 8300-8307.
[25] K. C. Lee, H. A. Wi, Highly Crosslinked Micron-Sized, Monodispersed Polystyrene Particles by Batch Dispersion Polymerization. Journal of Applied Polymer Science 2010, 115: 297-307.
[26] E. A. Grulke, Suspension Polymerization in Encyclopedia of Polymer Science and Engineering, Wiley 1989, 16: 443-473.
[27] Y Zhang, D Rochefort, Comparison of Emulsion and Vibration Nozzle Methods for Microencapsulation of Laccase and Glucose Oxidase by Interfacial Reticulation of Poly(ethyleneimine). J Microencapsul. 2010, 27: 703-713.
[28] T. Nakashima , M. Shimizu, M. Kukizaki, Particle Control of Emulsion by Membrane Emulsification and its Applications. Advanced Drug Delivery Reviews 2000, 45: 47–56.
[29] L. H. Jansson, M. C. Wellons , G. W. Poenhlein , High Swelling of Latex Particles Without the Utilization of Swelling Agents. Journal of Polymer Science: Polymer Letters Edition. 1983, 21: 937-943.
[30] M. Okubo, Z. Wang, E. Ise, H. Minami, Adsorption of Styrene on Mi-cron-sized, Monodisperse, Cross-linked Polymer Particles in a Snowman-shaped state by Utilizing the Dynamic Swelling Method. Colloid and Polymer Science 2001, 279: 976-982.
[31] M. Okubo, E. Ise, T. Yamashita, Synthesis of Greater Than 10-mm-Sized, Monodispersed Polymer Particles by One-step Seeded Polymerization for Highly Monomer-Swollen Polymer Particles Pre-pared Utilizing the Dynamic Swelling Method. Journal of Applied Polymer Science 1999, 74, 278-285.
[32] H. Brian S., N. Donald H., G. Robert G., Seeded Emulsion Polymerization of Styrene. J.C.S. Faraday I, 1980, 76: 1323-1343.
[33] J Ugelstad, Swelling Capacity of Aqueous Dispersions of Oligomer and Polymer Substances and Mixtures Thereof. Makromolekulare Chemie 1978, 179:815-817.
[34] K. C. LEE, H. A. WI, Synthesis of Crosslinked Polystyrene Particles by Seeded Batch Polymerization with Monomer Absorption. Trans. Nonferrous Met. Soc. China 2011, 21: 153-159.
[35] Q. Zhang, Y. Han, W. Wang, T. Song, J. Chang, A Theoretical and Ex-perimental Investigation of The Size Distribution of Polystyrene Mi-crospheres by Seeded Polymerization. Journal of Colloid and Interface Science 2010, 342: 62-67.
[36] Jin-Woong Kim, Kyung-Do Suh, Monodisperse Micron-sized Polysty-rene Particles by Seeded Polymerization: Effect of Seed Crosslinking on Monomer Swelling and Particle Morphology. Polymer 2000, 41: 6181-6188.
[37] Q. Zhang, Y. Han, W. C. Wang, L. Zhang, J. Chang, Preparation of Fuorescent Polystyrene Microspheres by Gradual Solvent Evapora-tion Method. European Polymer Journal 2009, 45: 550-556.
[38] Jin-Woong Kim, Kyung-Do Suh, Monodisperse, full-IPN Structured Polymer Particles in Micron-Sized Range by Seeded Polymerization. Macromol. Chem. Phys. 2001, 202: 621-627.
[39] W. Yang, W. Ming, J. Hu, X. Lu, S. Fu, Morphological Investigations of Crosslinked Polystyrene Microspheres by Seeded Polymerization. Colloid Polym Sci 1998, 276: 655-661.
[40] E. Unsal, S. T. Camli, S. Senel, A. Tuncel, Chromatographic Perfor-mance of Monodisperse–Macroporous Particles Produced by Modified Seeded Polymerization. Journal of Applied Polymer Science 2004, 92: 607-618.
[41] D. Kim, D. Y. Lee, K. Lee, and S. Choe, Effect of Crosslinking Agents on the Morphology of Polymer Particles Produced by One-Step Seeded Polymerization. Macromolecular Research 2009, 17: 250-258.
[42] E. Partouche, D. Waysbort, S. Margel, Surface Modification of Crosslinked Poly(styrene-divinyl benzene) Micrometer-sized Particles of Narrow Size Distribution by Ozonolysis. Journal of Colloid and Interface Science 2006, 294: 69-78.
[43] M. Mingliang, Z. Qiuyu, Z. Xingbo, X. Hailong, Preparation of Monodisperse Large-Size Cross-Linked P(GMA-St-EGDMA) Micro-spheres by Two-Step Swelling Polymerization. Software Engineering and Knowledge Engineering 2012, 162: 853-861.
[44] Z. Shiva, Novel Application of Decalin and Methyl-β-cyclodextrin in the Activated Seed Swelling Technique. J Polym Res2013,20:103-109.
[45] J. W Kim, J. H Ryu, K. D Suh, Monodisperse Micron-Sized Macroporous Poly(styrene-co-divinylbenzene) Particles by Seeded Polymerization. Colloid Polym Sci 2001, 279:146-152.
[46] J. Ugelstad, K.H. Kaggerud, F.K. Hansen, A. Berge, Absorption of low molecular weight compounds in aqueous dispersions of poly-mer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Makromolekulare Chemie, 1979, 180: 737-744.
[47] 侯昱瑋, 「二階段溶脹法製備具交聯結構之均一粒徑微米球」, 國立中央大學,化學工程與材料工程學系碩士論文(2012)
[48] J. Aguiar, P. Carpena, J.A. Molina-Bolívar, C. Carnero Ruiz, On the Deter-mination of the Critical Micelle Concentration by the Pyrene 1:3 Ra-tio Method. Journal of Colloid and Interface Science 2003, 258:116-122.
[49] N Grassie, G Scott. Polymer Degradation and Stabilization.Cambridge: Cambridge University Press, 1985. p. 24-28.
[50] F.M. Uhl, G.F. Levchik, S.V. Levchik, C. Dick, J. J. Liggat, C.E. Snape, C.A. Wilkie, The Thermal Stability of Cross-linked Polymers: Methyl Methacrylate with Divinylbenzene and Styrene with Dimethacrylates. Polymer Degradation and Stability 2001, 71: 317-325.
[51] Galina F. Levchik, Kun Si, Sergei V. Levchik, G. Camino, Charles A. Wilkie, The Correlation between Cross-linking and Thermal Stability: Cross-linked Polystyrenes and Polymethacrylates. Polymer Degradation and Stability 1999, 65: 395-403.